Arc length with parametric equations, Mathematics

Assignment Help:

Arc Length with Parametric Equations

In the earlier sections we have looked at a couple of Calculus I topics in terms of parametric equations.  We now require to look at a parametric equations.

In this part we will look at the arc length of the parametric curve illustrated by,

x = f (t)

y = g (t)

α ≤ t ≤ β

We will as well be assuming that the curve is traced out exactly one time as t increases from α to β.  We will as well need to suppose that the curve is traced out from left to right as t increases. This is equal to saying,

dx/dt  ≥ 0        for  α ≤ t ≤ β

Thus, let's begin the derivation by recalling the arc length formula since we first derived it in the arc length part of the Applications of Integrals chapter.

L = ∫ ds

In which,

1774_Arc Length with Parametric Equations 2.png

We will make use of the first ds above since we have a nice formula for the derivative in terms of the parametric equations. To make use of this we'll as well need to know that,

 dx = f ′ (t) dt = (dx/dt) dt

After that the arc length formula becomes,

1413_Arc Length with Parametric Equations 3.png

This is a specifically unpleasant formula.  Though, if we factor out the denominator from the square root we reach at,

1816_Arc Length with Parametric Equations 4.png

Here now, utilizing our assumption that the curve is being traced out from left to right we can drop the absolute value bars on the derivative that will permit us to cancel the two derivatives that are outside the square root.


Related Discussions:- Arc length with parametric equations

Unitary method, what is history of Unitary method

what is history of Unitary method

Proof of the properties of vector arithmetic, Proof of the Properties of ve...

Proof of the Properties of vector arithmetic Proof of a(v → + w → ) = av → + aw → We will begin with the two vectors, v → = (v 1 , v 2 ,..., v n )and w? = w

Projections - vector, Projections The good way to understand projection...

Projections The good way to understand projections is to see a couple of diagrams. Thus, given two vectors a → and b → we want to find out the projection of b → onto a → . T

Trigonometry, sin^2alpha *sec^2beta +tan^2 beta *cos^2alpha=sin^2alpha+tan^...

sin^2alpha *sec^2beta +tan^2 beta *cos^2alpha=sin^2alpha+tan^2 beta

What is the difference in the two low temperatures, The low temperature in ...

The low temperature in Anchorage, Alaska present was -4°F. The low temperature in Los Angeles, California was 63°F. What is the difference in the two low temperatures? Visualiz

The mode -measures of central tendency, The mode - It is one of the me...

The mode - It is one of the measures of central tendency. The mode is defined as a value in a frequency distribution that has the highest frequency. Occasionally a single valu

Determine solutions to the given equation or inequality, Illustrates that t...

Illustrates that the following numbers aren't solutions to the given equation or inequality. y = -2 in 3( y + 1) = 4 y - 5 Solution In this case in essence we do the sam

The limit, The Limit : In the earlier section we looked at some problems ...

The Limit : In the earlier section we looked at some problems & in both problems we had a function (slope in the tangent problem case & average rate of change in the rate of chan

Parallel lines, Parallel to the line specified by 10 y + 3x= -2 In this...

Parallel to the line specified by 10 y + 3x= -2 In this case the new line is to be parallel to the line given by 10 y ? 3x ? -2 and so it have to have the similar slope as this

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd