Arc length with parametric equations, Mathematics

Assignment Help:

Arc Length with Parametric Equations

In the earlier sections we have looked at a couple of Calculus I topics in terms of parametric equations.  We now require to look at a parametric equations.

In this part we will look at the arc length of the parametric curve illustrated by,

x = f (t)

y = g (t)

α ≤ t ≤ β

We will as well be assuming that the curve is traced out exactly one time as t increases from α to β.  We will as well need to suppose that the curve is traced out from left to right as t increases. This is equal to saying,

dx/dt  ≥ 0        for  α ≤ t ≤ β

Thus, let's begin the derivation by recalling the arc length formula since we first derived it in the arc length part of the Applications of Integrals chapter.

L = ∫ ds

In which,

1774_Arc Length with Parametric Equations 2.png

We will make use of the first ds above since we have a nice formula for the derivative in terms of the parametric equations. To make use of this we'll as well need to know that,

 dx = f ′ (t) dt = (dx/dt) dt

After that the arc length formula becomes,

1413_Arc Length with Parametric Equations 3.png

This is a specifically unpleasant formula.  Though, if we factor out the denominator from the square root we reach at,

1816_Arc Length with Parametric Equations 4.png

Here now, utilizing our assumption that the curve is being traced out from left to right we can drop the absolute value bars on the derivative that will permit us to cancel the two derivatives that are outside the square root.


Related Discussions:- Arc length with parametric equations

Triangle, we have to find the perimeter when 1 rib is 7 cm and another rib...

we have to find the perimeter when 1 rib is 7 cm and another rib is 5 cm

Stats, Instructions: 1. Write the null and alternative hypotheses. ...

Instructions: 1. Write the null and alternative hypotheses. 2. Calculate the test statistic. 3. Determine the critical value whether or not there has been an improv

Calculus (The squeeze theorem), When finding the limit as x approaches 0 th...

When finding the limit as x approaches 0 the for function (square root of x^3 + x^2) cos(pi/2x) would the limit not exist because there would be a zero in the denominator?

Find the integral of a function, We want to find the integral of a function...

We want to find the integral of a function at an arbitrary location x from the origin. Thus, where I(x=0) is the value of the integral for all times less than 0. (Essenti

Using euclid''s algorithm find the value of x & y, If d is the HCF of 30, 7...

If d is the HCF of 30, 72, find the value of x & y satisfying d = 30x + 72y. (Ans:5, -2 (Not unique) Ans:    Using Euclid's algorithm, the HCF (30, 72) 72 = 30 × 2 + 12

Spring force, Spring, F s We are going to suppose that Hooke's Law wil...

Spring, F s We are going to suppose that Hooke's Law will govern the force as the spring exerts on the object. This force will all the time be present suitably and is F s

Mass marketing, is mass marketing completely dead?

is mass marketing completely dead?

What is a mixed number, Q. What is a Mixed Number? Ans. A mixed nu...

Q. What is a Mixed Number? Ans. A mixed number is an integer, along with a fractional part, which has the same sign. (Therefore, a mixed number always has two parts.) M

Describe the basic concepts and terminology, Describe the Basic Concepts an...

Describe the Basic Concepts and Terminology? Somebody tells you that x = 5 and y = 3. "What does it all mean?!" you shout. Well here's a picture: This picture is what's

Earning money, Terry earns $680 per week. He is entitled to 4 weeks annual ...

Terry earns $680 per week. He is entitled to 4 weeks annual leave and receives an additional holiday loading of 17.5%. Calculate his total pay for this holiday period.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd