Arc length with parametric equations, Mathematics

Assignment Help:

Arc Length with Parametric Equations

In the earlier sections we have looked at a couple of Calculus I topics in terms of parametric equations.  We now require to look at a parametric equations.

In this part we will look at the arc length of the parametric curve illustrated by,

x = f (t)

y = g (t)

α ≤ t ≤ β

We will as well be assuming that the curve is traced out exactly one time as t increases from α to β.  We will as well need to suppose that the curve is traced out from left to right as t increases. This is equal to saying,

dx/dt  ≥ 0        for  α ≤ t ≤ β

Thus, let's begin the derivation by recalling the arc length formula since we first derived it in the arc length part of the Applications of Integrals chapter.

L = ∫ ds

In which,

1774_Arc Length with Parametric Equations 2.png

We will make use of the first ds above since we have a nice formula for the derivative in terms of the parametric equations. To make use of this we'll as well need to know that,

 dx = f ′ (t) dt = (dx/dt) dt

After that the arc length formula becomes,

1413_Arc Length with Parametric Equations 3.png

This is a specifically unpleasant formula.  Though, if we factor out the denominator from the square root we reach at,

1816_Arc Length with Parametric Equations 4.png

Here now, utilizing our assumption that the curve is being traced out from left to right we can drop the absolute value bars on the derivative that will permit us to cancel the two derivatives that are outside the square root.


Related Discussions:- Arc length with parametric equations

Calculate area of a square, The area of a square is given by the formula wi...

The area of a square is given by the formula width time's height. But since the square has all the sides equal, the height is of the same measure as its width. Hence its formula is

Explain similar figures in similarity, Explain Similar Figures in similarit...

Explain Similar Figures in similarity ? Similar figures are figures that have the same shape but not necessarily the same size, so the image of a figure is similar to the orig

Derivatives to physical systems, Derivatives to Physical Systems: A st...

Derivatives to Physical Systems: A stone is dropped into a quiet lake, & waves move within circles outward from the location of the splash at a constant velocity of 0.5 feet p

NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS, Our objective is solve the follo...

Our objective is solve the following fourth-order BVP: (a(x)u'' )'' = f (x) u(0) = u(1)=0 u(0)' = u(1)'=0 (a) Give the variational formulation of the above BVP. (b) Describe the

Additional rule- rules of probability, Additional Rule- Rules of Probabilit...

Additional Rule- Rules of Probability Additional rule is used to calculate the probability of two or more mutually exclusive events. In such circumstances the probability of t

Compute the derivative, Write an octave program that will take a set of poi...

Write an octave program that will take a set of points {x k , f k } representing a function and compute the derivative at the same points x k using 1. 2-point forward di erence

Calculate the edges in an undirected graph, Calculate the edges in an undir...

Calculate the edges in an undirected graph along with two vertices of degree 7, four vertices of degree 5, and the remaining four vertices of degree are 6? Ans: Total degree of

Vector analysis ...gradient, A body is constrained to move in a path y = 1+...

A body is constrained to move in a path y = 1+ x^2 and its motion is resisted by friction. The co-efficient of friction is 0.3. The body is acted on by a force F directed towards t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd