Arc length - applications of integrals, Mathematics

Assignment Help:

Arc Length - Applications of integrals

In this part we are going to look at determining the arc length of a function.  As it's sufficiently easy to derive the formulas that we'll utilize in this section we will derive one of them and leave the other to you to derive.

We want to find out the length of the continuous function

y = f (x) on the interval [a, b].

Primarily we'll need to find out the length of the curve. We'll do this by dividing the interval up into n equal subintervals each of width Δx and we'll indicate the point on the curve at each point by Pi. We can then estimate the curve by a series of straight lines connecting the points. Now Here is a sketch of this situation for n = 9.

132_Arc Length - Applications of integrals 4.png

Now indicate the length of every line segments by then be approximately, |Pi -1  Pi|  and the length of the curve will

206_Arc Length - Applications of integrals 3.png

and after that we can obtain the exact length by taking n larger and larger.  Alternatively, the exact length will be,

1974_Arc Length - Applications of integrals 2.png

Now here, let's get a good grasp on the length of each of these line segments. Very first, on each segment let's illustrate Δyi = yi - yi-1 = f (xi) - f (xi-1) . After that we can calculate directly the length of the line segments like this:

|Pi-1 Pi| = √ ((xi - xi-1)2 + (yi - yi-1)2)

= √(Δx2 +Δy2i).

By using the Mean Value Theorem we make out that on the interval [xi-1, xi] there is a point x*i that is why,

F (xi) - f (xi-1)

= f' (x*i) (xi - xi-1)

Δyi= f' (x*i)Δx

Hence, the length can now be written as,

|Pi-1 Pi| = √ ((xi - xi-1)2 + (yi - yi-1)2)

= √(Δx2 +[f' (xi*)]2 Δx2 )

= √ (1 + [f' (xi*)]Δx)

The exact length of the curve is then,

2388_Arc Length - Applications of integrals 1.png

Though, by using the definition of the definite integral, this is nothing much more than,

L - ∫ba√ (1+[f' (x)]2 dx)

A little more suitable notation (according to me) is the following.

L = ∫ba √ (1 + (dy/dx)2 dx)

In a identical way we can also derive a formula for x = h(y) on [c,d]. This formula is,

L - ∫bc√ (1+[h' (y)]2 dy)

bc √ (1 + (dx/dy)2 dy)

Once Again, the second form is possibly a much more convenient.

Note: the variation in the derivative under the square root! Don't get so confused. With one we distinguish with respect to x and with the other we distinguish with respect to y. One way to maintain the two straight is to note that the differential in the "denominator" of the derivative will match up along with the differential in the integral. This is one of the causes why the second form is a little much more suitable.

Previous to we work any instance we need to make a small change in notation. In place of having two formulas for the arc length of a function we are going to decrease it, in part, to a single formula. From this point on we are going to make use of the following formula for the length of the curve.


Related Discussions:- Arc length - applications of integrals

Example of rounding off, Example of Rounding Off: Example: Round ...

Example of Rounding Off: Example: Round off the subsequent number to two decimal places. 6.238 Solution: Step 1:             8 is the number to the right of t

Prove that a tree with n vertices has n - 1 edges, Prove that A tree with n...

Prove that A tree with n vertices has (n - 1) edges.    Ans: From the definition of a tree a root comprise indegree zero and all other nodes comprise indegree one. There should

Solve the equation for x, Solve the equation for x and check each solution....

Solve the equation for x and check each solution. 2/(x+3) -3/(4-x) = 2x-2/(x 2 -x-12)

Excel, do you guys have excel math

do you guys have excel math

Fourier series - partial differential equations, Fourier series - Partial D...

Fourier series - Partial Differential Equations One more application of series arises in the study of Partial Differential Equations.  One of the more generally employed method

Square numbers, determine the square of the following numbers ... a.8 b.13 ...

determine the square of the following numbers ... a.8 b.13 c.17 and d.80

Pair of straight line, a pair of straight lines are drawn through the origi...

a pair of straight lines are drawn through the origin forms with the line 2x+3y=6 an isoceles triangle right angled at origin find the equation of pair of straight line?

Trignometry, i have to get 10 points in 10th class

i have to get 10 points in 10th class

Illustrate Ionic solids, Ionic solids, which have anionic vacancies because...

Ionic solids, which have anionic vacancies because of metal excess defect develop colour. Illustrate with the help of a suitable example.

Multiple integrals, how to convert double integral into polar coordinates a...

how to convert double integral into polar coordinates and change the limits of integration

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd