Arc length - applications of integrals, Mathematics

Assignment Help:

Arc Length - Applications of integrals

In this part we are going to look at determining the arc length of a function.  As it's sufficiently easy to derive the formulas that we'll utilize in this section we will derive one of them and leave the other to you to derive.

We want to find out the length of the continuous function

y = f (x) on the interval [a, b].

Primarily we'll need to find out the length of the curve. We'll do this by dividing the interval up into n equal subintervals each of width Δx and we'll indicate the point on the curve at each point by Pi. We can then estimate the curve by a series of straight lines connecting the points. Now Here is a sketch of this situation for n = 9.

132_Arc Length - Applications of integrals 4.png

Now indicate the length of every line segments by then be approximately, |Pi -1  Pi|  and the length of the curve will

206_Arc Length - Applications of integrals 3.png

and after that we can obtain the exact length by taking n larger and larger.  Alternatively, the exact length will be,

1974_Arc Length - Applications of integrals 2.png

Now here, let's get a good grasp on the length of each of these line segments. Very first, on each segment let's illustrate Δyi = yi - yi-1 = f (xi) - f (xi-1) . After that we can calculate directly the length of the line segments like this:

|Pi-1 Pi| = √ ((xi - xi-1)2 + (yi - yi-1)2)

= √(Δx2 +Δy2i).

By using the Mean Value Theorem we make out that on the interval [xi-1, xi] there is a point x*i that is why,

F (xi) - f (xi-1)

= f' (x*i) (xi - xi-1)

Δyi= f' (x*i)Δx

Hence, the length can now be written as,

|Pi-1 Pi| = √ ((xi - xi-1)2 + (yi - yi-1)2)

= √(Δx2 +[f' (xi*)]2 Δx2 )

= √ (1 + [f' (xi*)]Δx)

The exact length of the curve is then,

2388_Arc Length - Applications of integrals 1.png

Though, by using the definition of the definite integral, this is nothing much more than,

L - ∫ba√ (1+[f' (x)]2 dx)

A little more suitable notation (according to me) is the following.

L = ∫ba √ (1 + (dy/dx)2 dx)

In a identical way we can also derive a formula for x = h(y) on [c,d]. This formula is,

L - ∫bc√ (1+[h' (y)]2 dy)

bc √ (1 + (dx/dy)2 dy)

Once Again, the second form is possibly a much more convenient.

Note: the variation in the derivative under the square root! Don't get so confused. With one we distinguish with respect to x and with the other we distinguish with respect to y. One way to maintain the two straight is to note that the differential in the "denominator" of the derivative will match up along with the differential in the integral. This is one of the causes why the second form is a little much more suitable.

Previous to we work any instance we need to make a small change in notation. In place of having two formulas for the arc length of a function we are going to decrease it, in part, to a single formula. From this point on we are going to make use of the following formula for the length of the curve.


Related Discussions:- Arc length - applications of integrals

Describe subtracting negative fractions, Describe Subtracting Negative Frac...

Describe Subtracting Negative Fractions? Subtracting two fractions, whether one is positive and one is negative, or whether they are both negative, is almost the same process a

Speaking mathematically-how do children learn?, Speaking Mathematically :  ...

Speaking Mathematically :  A Class 2 teacher was explaining the concept of place value to his students, using the number eleven. He started by saying "One and one make eleven." So

Normal Distribution, You don''t have to give me the answer. I just want to ...

You don''t have to give me the answer. I just want to know HOW to do it. In a set of 400 ACT scores where the mean is 22 and the standard deviation is 4.5, how many scores are ex

Find the sum-of-products expression for the function, Find the sum-of-produ...

Find the sum-of-products expression for subsequent function,  F (x,y,z) = y + Z‾ Ans: The sum of the product expression for the following function f is DNF (disjunc

Maximin method -decision making under uncertainty, Decision making under un...

Decision making under uncertainty Various methods are used to make decision in circumstances whereas only the pay offs are identified and the likelihood of every state of natur

Compute simple addition, John was doing his homework on vertical addition, ...

John was doing his homework on vertical addition, and had to compute : 5 3+ 3 4  and 6 8 +45 He did the first one easily, just the way his teacher had taught him. He first ad

Iti, Gm signal is better than am signal becuase

Gm signal is better than am signal becuase

Determine the measure of a base angle, The angle calculate of the base angl...

The angle calculate of the base angles of an isosceles triangle are shown by x and the vertex angle is 3x + 10. Determine the measure of a base angle. a. 112° b. 42.5° c.

Solve by factorization, Solve by factorization X 2 +(a/a+b + a+b/a)x+...

Solve by factorization X 2 +(a/a+b + a+b/a)x+1 = 0 X 2 +(a/a+b + a+b/a)x+1 =>  X 2 +(a/a+b x a+b/ax + a/a+b .a+b/a) =>  X[x+a/a+b] +a+b/a[a+a*a+b]= 0 =>  X= -a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd