Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Arbitrary categorisation - learning decision trees:
Through visualising a set of boxes with some balls in. There if all the balls were in a single box so this would be nicely ordered but it would be extremely easy to find a particular ball. Moreover If the balls were distributed amongst the boxes then this would not be so nicely ordered but it might take rather a whereas to find a particular ball. It means if we were going to define a measure based at this notion of purity then we would want to be able to calculate a value for each box based on the number of balls in it so then take the sum of these as the overall measure. Thus we would want to reward two situations: nearly empty boxes as very neat and boxes just with nearly all the balls in as also very neat. However this is the basis for the general entropy measure that is defined follows like:
Now next here instantly an arbitrary categorisation like C into categories c1, ..., cn and a set of examples, S, for that the proportion of examples in ci is pi, then the entropy of S is as:
Here measure satisfies our criteria that is of the -p*log2(p) construction: where p gets close to zero that is the category has only a few examples in it so then the log(p) becomes a big negative number and the p part dominates the calculation then the entropy works out to be nearly zero. However make it sure that entropy calculates the disorder in the data in this low score is good and as it reflects our desire to reward categories with few examples in. Such of similarly if p gets close to 1 then that's the category has most of the examples in so then the log(p) part gets very close to zero but it is this that dominates the calculation thus the overall value gets close to zero. Thus we see that both where the category is nearly - or completely - empty and when the category nearly contains as - or completely contains as - all the examples and the score for the category gets close to zero that models what we wanted it to. But note that 0*ln(0) is taken to be zero by convention them.
What are the Applications of Linked List are a) Fixed block storage allocation b) garbage collection
Explain Message switching. Recourse computer sends data to switching office that stores the data into buffer and seems for a free link. Sends link to other switching office, if
draw a binary tree from its inorder and preorder traversal sequences given as follows: inorder: d b g e h a c n f preorder: a b d e g h c f n
Illustrate the table of types of serach engines Type in: CIE and the search engine would return about 22 million hits Type in
Multiple Instruction and Multiple Data stream (MIMD) In this association, multiple control units and multiple processing elements are prepared as in MISD. But the discrepancy i
Q. Create simple algebraic expression from K-Map? Now create simple algebraic expression from K-Map. These expressions are created by employing adjacency if we have 2 adjacent
Define Protocol. It is a set of rules that are followed by interconnecting computers and terminals to make sure the orderly transfer of information
Direct Mapping: In this particular technique, block j of the primary memory maps onto block j modulo 128 of the cache. The primary memory blocks 0,128,256,...is loaded
What are the process states in Unix? As a process implements it changes state according to its circumstances. Unix processes have the following states: Running : The process
Explain dataflow computation model An option to the von Neumann model of computation is a dataflow computation model. In a dataflow model the control is tied to the flow of dat
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd