Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Arbitrary categorisation - learning decision trees:
Through visualising a set of boxes with some balls in. There if all the balls were in a single box so this would be nicely ordered but it would be extremely easy to find a particular ball. Moreover If the balls were distributed amongst the boxes then this would not be so nicely ordered but it might take rather a whereas to find a particular ball. It means if we were going to define a measure based at this notion of purity then we would want to be able to calculate a value for each box based on the number of balls in it so then take the sum of these as the overall measure. Thus we would want to reward two situations: nearly empty boxes as very neat and boxes just with nearly all the balls in as also very neat. However this is the basis for the general entropy measure that is defined follows like:
Now next here instantly an arbitrary categorisation like C into categories c1, ..., cn and a set of examples, S, for that the proportion of examples in ci is pi, then the entropy of S is as:
Here measure satisfies our criteria that is of the -p*log2(p) construction: where p gets close to zero that is the category has only a few examples in it so then the log(p) becomes a big negative number and the p part dominates the calculation then the entropy works out to be nearly zero. However make it sure that entropy calculates the disorder in the data in this low score is good and as it reflects our desire to reward categories with few examples in. Such of similarly if p gets close to 1 then that's the category has most of the examples in so then the log(p) part gets very close to zero but it is this that dominates the calculation thus the overall value gets close to zero. Thus we see that both where the category is nearly - or completely - empty and when the category nearly contains as - or completely contains as - all the examples and the score for the category gets close to zero that models what we wanted it to. But note that 0*ln(0) is taken to be zero by convention them.
Based on the disciplines of engineering, AI and physiology robotics is concerned with building robot machines with physical capabilities akin to human beings which are cont
Perfect fundamental logic - artificial intelligence: However, while it's theoretically possible to do definite intelligent things (like prove some easy mathematics theorems a
Q. What is Master Clock Signal in Control Unit? The Master Clock Signal: This signal causes micro-operations to be executed in a square. In a single clock cycle either a single
Why can CRC detect more errors than simple Checksum? There are two purposes a CRC can identify more errors than a simple Checksum. 1. Since an input bit is shifted by all th
consider an open circuit pn junction.sketch curves as a function of distance across the junction of space charge ,electric field and potential
Q. Find 9's complement for decimal number? The 9's complement is achieved by subtracting every digit of number from 9 (the highest digit value). Let's assume that we want to si
Execution error and compilation error: Errors like as mismatch of data types or array out of bound error are called as execution errors or runtime errors. These errors are us
how to implement a modified distribution method using c/c++
a. What is the meaning of user interaction? What are the dissimilar styles in which forms of interaction can be classified? Give one advantage, disadvantage and an example of every
Explain why pervasive computing can be termed as a “technology that disappears”
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd