Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Arbitrary categorisation - learning decision trees:
Through visualising a set of boxes with some balls in. There if all the balls were in a single box so this would be nicely ordered but it would be extremely easy to find a particular ball. Moreover If the balls were distributed amongst the boxes then this would not be so nicely ordered but it might take rather a whereas to find a particular ball. It means if we were going to define a measure based at this notion of purity then we would want to be able to calculate a value for each box based on the number of balls in it so then take the sum of these as the overall measure. Thus we would want to reward two situations: nearly empty boxes as very neat and boxes just with nearly all the balls in as also very neat. However this is the basis for the general entropy measure that is defined follows like:
Now next here instantly an arbitrary categorisation like C into categories c1, ..., cn and a set of examples, S, for that the proportion of examples in ci is pi, then the entropy of S is as:
Here measure satisfies our criteria that is of the -p*log2(p) construction: where p gets close to zero that is the category has only a few examples in it so then the log(p) becomes a big negative number and the p part dominates the calculation then the entropy works out to be nearly zero. However make it sure that entropy calculates the disorder in the data in this low score is good and as it reflects our desire to reward categories with few examples in. Such of similarly if p gets close to 1 then that's the category has most of the examples in so then the log(p) part gets very close to zero but it is this that dominates the calculation thus the overall value gets close to zero. Thus we see that both where the category is nearly - or completely - empty and when the category nearly contains as - or completely contains as - all the examples and the score for the category gets close to zero that models what we wanted it to. But note that 0*ln(0) is taken to be zero by convention them.
What are the main data structures used in the following areas: RDBMS, Network data model and Hierarchical data model? RDBMS = Array (i.e. Array of structures) Network data m
The year is 2199. For many generations, the robotic Cyleth have faithfully served humanity. However, under the direction of the computerized superintelligence Skyweb, they have tur
State the SELECTIVE CLEAR - logic micro operations The selective-clear operation clears to 0 bits in register A only where there are corresponding 1's in the register B. For
Consider a processor with a 4-stage pipeline. Each time a conditional branch is encountered, the pipeline must be flushed (3 partially completed instructions are lost). Determine
Unit Resolution: By assuming that we knew the sentence as "Tony Blair is prime minister or may the moon is made of blue cheese", is true or we later found out that the moon is
Define Alphabet and String? A finite set of symbols is termed as alphabet. An alphabet is frequently signified by sigma, yet can be specified any name. B = {0, 1} here B is
The difference among the height of the left sub tree and height of the right tree, for each node, is almost one. AVL - tree
Data can be changed from special code to temporal code by using ? Ans. By using Shift Registers data can be changed from special code to temporal code. A Register wherein data ge
Applications of Microprogramming: Microprogramming application:: emulation o Use of a micro program on 1 machine to execute programs initially written to run on ano
Arithmetic Pipelines The method of pipelining can be applied to a variety of complex and slow arithmetic operations to speed up the processing time. The pipelines used for arit
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd