Approximating solutions to equations newtons method, Mathematics

Assignment Help:

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion and actually we've solved out quite a few equations by ourselves to this point.  In all the instances we've looked at to this instance we were capable to in fact find the solutions, however it's not always probable to do that exactly and/or do the work by hand.

That is where this application comes into play.  Therefore, let's see what this application is all about.

1141_Newton’s Method.png

Let's assume that we desire to approximate the solution to f (x) = 0 and let's also assume that we have somehow found an initial approximation to this solution say, x0. This initial approximation is perhaps not all that good and therefore we'd like to discover a better approximation. It is easy enough to do.  Firstly we will get the tangent line to f ( x )at x0.

y = f ( x0 ) + f ′ ( x0 ) ( x - x0 )

Now, take a look at the graph below.

The blue line (if you're reading this in color anyway...) is the tangent line at x0. We can illustrate that this line will cross the x-axis much closer to the actual solution to the equation than x0 does.  Let's call this point where the tangent at x0 crosses the x-axis x1 and we'll utilizes this point as our new approximation to the solution.

Therefore, how do we determine this point? Well we know it's coordinates, ( x1 ,0) , and we know that it's on the tangent line therefore plug this point into the tangent line & solve out for x1 as follows,

0 = f ( x0 ) + f ′ ( x0 ) ( x1 - x0 )

x - x0 = -  f (x0 ) /f ′ ( x0 )

x1 = x0  - (f ( x0 ) /f ′ ( x0 ))

Therefore, we can determine the new approximation provided the derivative isn't zero at the original approximation.

Now we repeat the whole procedure to determine an even better approximation. We build up the tangent line to f ( x ) at x1 and utilizes its root, that we'll call x2, as a new approximation to the actual solution.  If we do it we will arrive at the given formula.

                  x2= x1 - (f ( x1 ) /f ′ ( x1 ))

This point is also illustrated on the graph above and we can illustrated from this graph that if we continue following this procedure will get a sequence of numbers which are getting very close the real solution. This procedure is called Newton's Method.


Related Discussions:- Approximating solutions to equations newtons method

Quantitative techniques, mentioning the type of business you could start an...

mentioning the type of business you could start and the location of your business, use the steps of quantitative methods for decision making narrating them one by one in the applic

Area of a hyperbolic wedge, The unit circle will be parametrized by (cosw, ...

The unit circle will be parametrized by (cosw, sinw). Provide a point on it, the region cut out by circle, the x-axis, and the line from the origin to this point has covered area w

Differntial equation, Verify Liouville''''s formula for y "-y" - y'''' + y ...

Verify Liouville''''s formula for y "-y" - y'''' + y = 0 in (0, 1) ?

Triangle, we have to find the perimeter when 1 rib is 7 cm and another rib...

we have to find the perimeter when 1 rib is 7 cm and another rib is 5 cm

Other ways to aid learning maths, OTHER WAYS TO AID LEARNING :  Here we sh...

OTHER WAYS TO AID LEARNING :  Here we shall pay particular attention to the need for repetition, learning from other children, and utilising errors for learning.

Real analysis, Let {An} be sequence of real numbers. Define a set S by: S={...

Let {An} be sequence of real numbers. Define a set S by: S={i ? N : for all j > i, ai

Surface areas and volumes, a conical vessel of radius 6cm and height 8cm is...

a conical vessel of radius 6cm and height 8cm is completely filled with water.a sphere is lowered into the water and its size is such that when it touches the size it is immersed.w

Brownian motion, How do I find the density of a square of a brownian motion...

How do I find the density of a square of a brownian motion .

We know this equation a°=1.prove this?, we know that log1 to any base =0 ta...

we know that log1 to any base =0 take antilog threfore a 0 =1

Bob is 2 years from being double as old as ellen, Bob is 2 years from being...

Bob is 2 years from being double as old as Ellen. The sum of twice Bob's age and three times Ellen's age is 66. How old is Ellen? Let x = Ellen's age and let y = Bob's age. Sin

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd