Approximating solutions to equations newtons method, Mathematics

Assignment Help:

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion and actually we've solved out quite a few equations by ourselves to this point.  In all the instances we've looked at to this instance we were capable to in fact find the solutions, however it's not always probable to do that exactly and/or do the work by hand.

That is where this application comes into play.  Therefore, let's see what this application is all about.

1141_Newton’s Method.png

Let's assume that we desire to approximate the solution to f (x) = 0 and let's also assume that we have somehow found an initial approximation to this solution say, x0. This initial approximation is perhaps not all that good and therefore we'd like to discover a better approximation. It is easy enough to do.  Firstly we will get the tangent line to f ( x )at x0.

y = f ( x0 ) + f ′ ( x0 ) ( x - x0 )

Now, take a look at the graph below.

The blue line (if you're reading this in color anyway...) is the tangent line at x0. We can illustrate that this line will cross the x-axis much closer to the actual solution to the equation than x0 does.  Let's call this point where the tangent at x0 crosses the x-axis x1 and we'll utilizes this point as our new approximation to the solution.

Therefore, how do we determine this point? Well we know it's coordinates, ( x1 ,0) , and we know that it's on the tangent line therefore plug this point into the tangent line & solve out for x1 as follows,

0 = f ( x0 ) + f ′ ( x0 ) ( x1 - x0 )

x - x0 = -  f (x0 ) /f ′ ( x0 )

x1 = x0  - (f ( x0 ) /f ′ ( x0 ))

Therefore, we can determine the new approximation provided the derivative isn't zero at the original approximation.

Now we repeat the whole procedure to determine an even better approximation. We build up the tangent line to f ( x ) at x1 and utilizes its root, that we'll call x2, as a new approximation to the actual solution.  If we do it we will arrive at the given formula.

                  x2= x1 - (f ( x1 ) /f ′ ( x1 ))

This point is also illustrated on the graph above and we can illustrated from this graph that if we continue following this procedure will get a sequence of numbers which are getting very close the real solution. This procedure is called Newton's Method.


Related Discussions:- Approximating solutions to equations newtons method

Combination, Combination A combination is a group of times whether ord...

Combination A combination is a group of times whether order is not significant. For a combination to hold at any described time it must comprise of the same items however i

What is angle pairs in parallel lines, What is Angle Pairs in Parallel Line...

What is Angle Pairs in Parallel Lines ? Next, we introduce several angle pairs formed by transversals which are very important in our study of geometry. Alternate interior an

Explain expressions, Explain Expressions ? "One set of absolute value s...

Explain Expressions ? "One set of absolute value signs can only take the absolute value of one number." For example, For the absolute value of negative six plus three,

One-sided limits, One-sided limits: We do this along with one-sided limits...

One-sided limits: We do this along with one-sided limits.  As the name implies, with one-sided limits we will just looking at one side of the point in question.  Following are the

Tangent lines, Tangent Lines : The first problem which we're going to stud...

Tangent Lines : The first problem which we're going to study is the tangent line problem.  Before getting into this problem probably it would be best to define a tangent line.

Find the volume and surface area of the double cone formed, A right triangl...

A right triangle whose sides are 15 cm and 20 cm is made to revolve about its hypotenuse. Find the volume and surface area of the double cone so formed. (Ans : 3768cu.cm,1318.8

Find the original average of boys and girls in the class, When 6 boys were ...

When 6 boys were admitted & 6 girls left the percentage of boys increased from 60% to 75%. Find the original no. of boys and girls in the class. Ans: Let the no. of Boys be x

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd