Approximating solutions to equations newtons method, Mathematics

Assignment Help:

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion and actually we've solved out quite a few equations by ourselves to this point.  In all the instances we've looked at to this instance we were capable to in fact find the solutions, however it's not always probable to do that exactly and/or do the work by hand.

That is where this application comes into play.  Therefore, let's see what this application is all about.

1141_Newton’s Method.png

Let's assume that we desire to approximate the solution to f (x) = 0 and let's also assume that we have somehow found an initial approximation to this solution say, x0. This initial approximation is perhaps not all that good and therefore we'd like to discover a better approximation. It is easy enough to do.  Firstly we will get the tangent line to f ( x )at x0.

y = f ( x0 ) + f ′ ( x0 ) ( x - x0 )

Now, take a look at the graph below.

The blue line (if you're reading this in color anyway...) is the tangent line at x0. We can illustrate that this line will cross the x-axis much closer to the actual solution to the equation than x0 does.  Let's call this point where the tangent at x0 crosses the x-axis x1 and we'll utilizes this point as our new approximation to the solution.

Therefore, how do we determine this point? Well we know it's coordinates, ( x1 ,0) , and we know that it's on the tangent line therefore plug this point into the tangent line & solve out for x1 as follows,

0 = f ( x0 ) + f ′ ( x0 ) ( x1 - x0 )

x - x0 = -  f (x0 ) /f ′ ( x0 )

x1 = x0  - (f ( x0 ) /f ′ ( x0 ))

Therefore, we can determine the new approximation provided the derivative isn't zero at the original approximation.

Now we repeat the whole procedure to determine an even better approximation. We build up the tangent line to f ( x ) at x1 and utilizes its root, that we'll call x2, as a new approximation to the actual solution.  If we do it we will arrive at the given formula.

                  x2= x1 - (f ( x1 ) /f ′ ( x1 ))

This point is also illustrated on the graph above and we can illustrated from this graph that if we continue following this procedure will get a sequence of numbers which are getting very close the real solution. This procedure is called Newton's Method.


Related Discussions:- Approximating solutions to equations newtons method

What is perfect squares, What is Perfect Squares ? Any number that can ...

What is Perfect Squares ? Any number that can be written as an integer to the power of two is called a perfect square. For example, 4 can be written as 2 2 4 is a "perfect sq

Vector addition, Is it possible to add two vectors of unequal magnitude and...

Is it possible to add two vectors of unequal magnitude and get a resultant of zero?Please explain also. Ans) no it is not possible as .. if the magnitude is diffrent then they c

Vijay, how to solve trignometric equations more easier?

how to solve trignometric equations more easier?

Example of inflection point - set theory and calculus, Need help, Determine...

Need help, Determine the points of inflection on the curve of the function y = x 3

Find least number of cables required to connect 100 computer, Find out the ...

Find out the least number of cables required to connect 100 computers to 20 printers to assurance that 20 computers can directly access 20 different printers.  Justify your answer.

How long will it take to dispense 330 gallons, A large pipe dispenses 750 g...

A large pipe dispenses 750 gallons of water in 50 seconds. At this rate, how long will it take to dispense 330 gallons? Find out the number of gallons per second by dividing 75

Use mathematical induction and prove equation, 1. Use mathematical inductio...

1. Use mathematical induction to prove whenever n is a positive integer. 2. Use loop invariant to prove that the program for computing the sum of 1,...,n is correct.

Ampltude and period, find the amplitude and period of y=3 sin 2 pi x

find the amplitude and period of y=3 sin 2 pi x

DECIMALS, the mass of a container is 5.81kg when full with sugar .the mass ...

the mass of a container is 5.81kg when full with sugar .the mass of container is 3.8kg when 3/8 of the sugar is removed.what is the mass of empty container

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd