Approximating solutions to equations newtons method, Mathematics

Assignment Help:

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion and actually we've solved out quite a few equations by ourselves to this point.  In all the instances we've looked at to this instance we were capable to in fact find the solutions, however it's not always probable to do that exactly and/or do the work by hand.

That is where this application comes into play.  Therefore, let's see what this application is all about.

1141_Newton’s Method.png

Let's assume that we desire to approximate the solution to f (x) = 0 and let's also assume that we have somehow found an initial approximation to this solution say, x0. This initial approximation is perhaps not all that good and therefore we'd like to discover a better approximation. It is easy enough to do.  Firstly we will get the tangent line to f ( x )at x0.

y = f ( x0 ) + f ′ ( x0 ) ( x - x0 )

Now, take a look at the graph below.

The blue line (if you're reading this in color anyway...) is the tangent line at x0. We can illustrate that this line will cross the x-axis much closer to the actual solution to the equation than x0 does.  Let's call this point where the tangent at x0 crosses the x-axis x1 and we'll utilizes this point as our new approximation to the solution.

Therefore, how do we determine this point? Well we know it's coordinates, ( x1 ,0) , and we know that it's on the tangent line therefore plug this point into the tangent line & solve out for x1 as follows,

0 = f ( x0 ) + f ′ ( x0 ) ( x1 - x0 )

x - x0 = -  f (x0 ) /f ′ ( x0 )

x1 = x0  - (f ( x0 ) /f ′ ( x0 ))

Therefore, we can determine the new approximation provided the derivative isn't zero at the original approximation.

Now we repeat the whole procedure to determine an even better approximation. We build up the tangent line to f ( x ) at x1 and utilizes its root, that we'll call x2, as a new approximation to the actual solution.  If we do it we will arrive at the given formula.

                  x2= x1 - (f ( x1 ) /f ′ ( x1 ))

This point is also illustrated on the graph above and we can illustrated from this graph that if we continue following this procedure will get a sequence of numbers which are getting very close the real solution. This procedure is called Newton's Method.


Related Discussions:- Approximating solutions to equations newtons method

Sums, what is 10 times 10 pls

what is 10 times 10 pls

Pendulum swings, how many pendulum swings will it take to walk across the c...

how many pendulum swings will it take to walk across the classroom

Integrals involving quadratics - integration techniques, Integrals Involvin...

Integrals Involving Quadratics To this point we have seen quite some integrals which involve quadratics.  Example of Integrals Involving Quadratics is as follow: ∫ (x / x 2

Function and relation, how to know if it is function and if is relation

how to know if it is function and if is relation

Tangents with polar coordinates - parametric equations, Tangents with Polar...

Tangents with Polar Coordinates Here we now require to discuss some calculus topics in terms of polar coordinates. We will begin with finding tangent lines to polar curves.

Factor , #Mai iss 3 years younger than twice the age of her brother . If b ...

#Mai iss 3 years younger than twice the age of her brother . If b represents the age of Mai''s brother .which expression below represents Mai''s age 2-3b 3-2b 2b-3 3b-2 2-3b 3-2b q

Periodicity, how to find periods in trigon ometry

how to find periods in trigon ometry

Define natural numbers, Q. Define natural numbers Ans. The natural...

Q. Define natural numbers Ans. The natural numbers (also called the counting numbers) are the numbers that you "naturally" use for counting: 1,2,3,4,... The set of n

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd