Approximating solutions to equations newtons method, Mathematics

Assignment Help:

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion and actually we've solved out quite a few equations by ourselves to this point.  In all the instances we've looked at to this instance we were capable to in fact find the solutions, however it's not always probable to do that exactly and/or do the work by hand.

That is where this application comes into play.  Therefore, let's see what this application is all about.

1141_Newton’s Method.png

Let's assume that we desire to approximate the solution to f (x) = 0 and let's also assume that we have somehow found an initial approximation to this solution say, x0. This initial approximation is perhaps not all that good and therefore we'd like to discover a better approximation. It is easy enough to do.  Firstly we will get the tangent line to f ( x )at x0.

y = f ( x0 ) + f ′ ( x0 ) ( x - x0 )

Now, take a look at the graph below.

The blue line (if you're reading this in color anyway...) is the tangent line at x0. We can illustrate that this line will cross the x-axis much closer to the actual solution to the equation than x0 does.  Let's call this point where the tangent at x0 crosses the x-axis x1 and we'll utilizes this point as our new approximation to the solution.

Therefore, how do we determine this point? Well we know it's coordinates, ( x1 ,0) , and we know that it's on the tangent line therefore plug this point into the tangent line & solve out for x1 as follows,

0 = f ( x0 ) + f ′ ( x0 ) ( x1 - x0 )

x - x0 = -  f (x0 ) /f ′ ( x0 )

x1 = x0  - (f ( x0 ) /f ′ ( x0 ))

Therefore, we can determine the new approximation provided the derivative isn't zero at the original approximation.

Now we repeat the whole procedure to determine an even better approximation. We build up the tangent line to f ( x ) at x1 and utilizes its root, that we'll call x2, as a new approximation to the actual solution.  If we do it we will arrive at the given formula.

                  x2= x1 - (f ( x1 ) /f ′ ( x1 ))

This point is also illustrated on the graph above and we can illustrated from this graph that if we continue following this procedure will get a sequence of numbers which are getting very close the real solution. This procedure is called Newton's Method.


Related Discussions:- Approximating solutions to equations newtons method

Solid Mensuration, The two sides of a triangle are 17 cm and 28 cm long, an...

The two sides of a triangle are 17 cm and 28 cm long, and the length of the median drawn to the third side is equal to 19.5 cm. Find the distance from an endpoint of this median to

What is the ratio of the areas of sectors , What is the ratio of the areas ...

What is the ratio of the areas of sectors I and II ?                               (Ans:4:5) Ans:    Ratio will be 120/360  Π r 2 : 150/360  Π r 2 4/12  : 5/12  =

What is the probability in which the marble chosen is blue, A bag holds 3 r...

A bag holds 3 red, 6 blue, 5 purple, and 2 orange marbles. One marble is selected at random. What is the probability in which the marble chosen is blue? The probability of blue

Find out the x-intercepts, Find out the x-intercepts & y-intercepts for eac...

Find out the x-intercepts & y-intercepts for each of the following equations.                            y =x 2 +x - 6 Solution As verification for each of these we wil

Angles of elevation and depression, Can someone please help me grasp the co...

Can someone please help me grasp the concept of angles of depression and elevation?

Definite integral, Definite Integral : Given a function f ( x ) which is c...

Definite Integral : Given a function f ( x ) which is continuous on the interval [a,b] we divide the interval in n subintervals of equivalent width, Δx , and from each interval se

Gravity, There is a list of the forces which will act on the object. Gr...

There is a list of the forces which will act on the object. Gravity, F g The force because of gravity will always act on the object of course. Such force is F g   = mg

Solving Trig Equations, How would you solve the equation: 1+ sin(theta)= 2 ...

How would you solve the equation: 1+ sin(theta)= 2 cos^2(theta)?

Exercise to think about this aspect of children- maths, Doing the following...

Doing the following exercise will give you and opportunity to think about this aspect of children. E1) List some illustrations of exploration by four or five-year-olds that you

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd