Approximating solutions to equations newtons method, Mathematics

Assignment Help:

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion and actually we've solved out quite a few equations by ourselves to this point.  In all the instances we've looked at to this instance we were capable to in fact find the solutions, however it's not always probable to do that exactly and/or do the work by hand.

That is where this application comes into play.  Therefore, let's see what this application is all about.

1141_Newton’s Method.png

Let's assume that we desire to approximate the solution to f (x) = 0 and let's also assume that we have somehow found an initial approximation to this solution say, x0. This initial approximation is perhaps not all that good and therefore we'd like to discover a better approximation. It is easy enough to do.  Firstly we will get the tangent line to f ( x )at x0.

y = f ( x0 ) + f ′ ( x0 ) ( x - x0 )

Now, take a look at the graph below.

The blue line (if you're reading this in color anyway...) is the tangent line at x0. We can illustrate that this line will cross the x-axis much closer to the actual solution to the equation than x0 does.  Let's call this point where the tangent at x0 crosses the x-axis x1 and we'll utilizes this point as our new approximation to the solution.

Therefore, how do we determine this point? Well we know it's coordinates, ( x1 ,0) , and we know that it's on the tangent line therefore plug this point into the tangent line & solve out for x1 as follows,

0 = f ( x0 ) + f ′ ( x0 ) ( x1 - x0 )

x - x0 = -  f (x0 ) /f ′ ( x0 )

x1 = x0  - (f ( x0 ) /f ′ ( x0 ))

Therefore, we can determine the new approximation provided the derivative isn't zero at the original approximation.

Now we repeat the whole procedure to determine an even better approximation. We build up the tangent line to f ( x ) at x1 and utilizes its root, that we'll call x2, as a new approximation to the actual solution.  If we do it we will arrive at the given formula.

                  x2= x1 - (f ( x1 ) /f ′ ( x1 ))

This point is also illustrated on the graph above and we can illustrated from this graph that if we continue following this procedure will get a sequence of numbers which are getting very close the real solution. This procedure is called Newton's Method.


Related Discussions:- Approximating solutions to equations newtons method

Problem Solving, Max can paint a house in 3 hours. Saria can paint a house...

Max can paint a house in 3 hours. Saria can paint a house in 5 hours. working together, how long will it take both Saria and Max to paint a house?

Circle, Circle Well, let's recall just what a circle is. A circle is al...

Circle Well, let's recall just what a circle is. A circle is all the points which are the similar distance, r - called the radius, from a point, ( h, k ) - called the center. I

Unitary method, who ,why and when discovered unitary method

who ,why and when discovered unitary method

What is the average number of miles lori ran, Lori ran (5)1/2 miles Monday,...

Lori ran (5)1/2 miles Monday, (6)1/4 miles Tuesday (4)1/2 miles Wednesday and (2)3/4 mile on Thursday what is the average number of miles lori ran ? To find the average, add

Young entrepreneur, As a creative and innovative entrepreneur, we are requi...

As a creative and innovative entrepreneur, we are required to invent or improvise a product or service that benefits the society and the economy, so what do you think is it?

Geometric interpretation of the cross product, Geometric Interpretation of ...

Geometric Interpretation of the Cross Product There is as well a geometric interpretation of the cross product.  Firstly we will let θ be the angle in between the two vectors a

How many relations are possible from a set, How many relations are possible...

How many relations are possible from a set A of 'm' elements to another set B of 'n' elements?     Ans: A relation R from a set A to other set B is specified as any subset of A

Managment Science, Classify models based on the degree of their abstraction...

Classify models based on the degree of their abstraction, and provide some examples of such models.

Arithmetic progressions, ARITHMETIC PROGRESSIONS: One  of the  endlessly a...

ARITHMETIC PROGRESSIONS: One  of the  endlessly alluring  aspects  of mathematics  is  that its thorniest  paradoxes have  a  way  of blooming  into  beautiful  theories Examp

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd