Approximating solutions to equations newtons method, Mathematics

Assignment Help:

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion and actually we've solved out quite a few equations by ourselves to this point.  In all the instances we've looked at to this instance we were capable to in fact find the solutions, however it's not always probable to do that exactly and/or do the work by hand.

That is where this application comes into play.  Therefore, let's see what this application is all about.

1141_Newton’s Method.png

Let's assume that we desire to approximate the solution to f (x) = 0 and let's also assume that we have somehow found an initial approximation to this solution say, x0. This initial approximation is perhaps not all that good and therefore we'd like to discover a better approximation. It is easy enough to do.  Firstly we will get the tangent line to f ( x )at x0.

y = f ( x0 ) + f ′ ( x0 ) ( x - x0 )

Now, take a look at the graph below.

The blue line (if you're reading this in color anyway...) is the tangent line at x0. We can illustrate that this line will cross the x-axis much closer to the actual solution to the equation than x0 does.  Let's call this point where the tangent at x0 crosses the x-axis x1 and we'll utilizes this point as our new approximation to the solution.

Therefore, how do we determine this point? Well we know it's coordinates, ( x1 ,0) , and we know that it's on the tangent line therefore plug this point into the tangent line & solve out for x1 as follows,

0 = f ( x0 ) + f ′ ( x0 ) ( x1 - x0 )

x - x0 = -  f (x0 ) /f ′ ( x0 )

x1 = x0  - (f ( x0 ) /f ′ ( x0 ))

Therefore, we can determine the new approximation provided the derivative isn't zero at the original approximation.

Now we repeat the whole procedure to determine an even better approximation. We build up the tangent line to f ( x ) at x1 and utilizes its root, that we'll call x2, as a new approximation to the actual solution.  If we do it we will arrive at the given formula.

                  x2= x1 - (f ( x1 ) /f ′ ( x1 ))

This point is also illustrated on the graph above and we can illustrated from this graph that if we continue following this procedure will get a sequence of numbers which are getting very close the real solution. This procedure is called Newton's Method.


Related Discussions:- Approximating solutions to equations newtons method

Fractions, what Is the common denominator for 1/2 and 1/4

what Is the common denominator for 1/2 and 1/4

Travel time, you are driving on a freeway to a tour that is 500 kilometers ...

you are driving on a freeway to a tour that is 500 kilometers from your home. after 30 minutes , you pass a freeway exit that you know is 50 kilometer from your home. assuming that

Solve the recurrence relation, Solve the recurrence relation T ...

Solve the recurrence relation T (K) = 2T (K-1), T (0) = 1 Ans: The following equation can be written in the subsequent form:  t n - 2t n-1 =  0  Here now su

What was brian''s total commission on these three sales, Brian is a real es...

Brian is a real estate agent. He forms a 2.5% commission on each sale. During the month of June he sold three houses. The houses sold for $153,000, $299,000, and $121,000. What was

Example of inflection point-differential equation, Example of inflection po...

Example of inflection point Determine the points of inflection on the curve of the function y = x 3 Solution The only possible inflexion points will happen where

Problems with applying algorithms , PROBLEMS WITH APPLYING ALGORITHMS :  F...

PROBLEMS WITH APPLYING ALGORITHMS :  From your experience, you would agree that children are expected to mechanically apply the algorithms for adding or subtracting numbers, regar

Compute the measure of the larger angle, Two angles are supplementary. The ...

Two angles are supplementary. The evaluate of one is 30 more than twice the measure of the other. Determine the measure of the larger angle. a. 130° b. 20° c. 50° d. 70

Pre-calculus, Give all solutions between o degree and 360 degree for sin x=...

Give all solutions between o degree and 360 degree for sin x=3/2

Invoices and trade discounts, Natureland garden center buys lawn mowers tha...

Natureland garden center buys lawn mowers that list for $679.95 less a 30% discount. What is the dollar amount of the discount?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd