Approximating solutions to equations newtons method, Mathematics

Assignment Help:

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion and actually we've solved out quite a few equations by ourselves to this point.  In all the instances we've looked at to this instance we were capable to in fact find the solutions, however it's not always probable to do that exactly and/or do the work by hand.

That is where this application comes into play.  Therefore, let's see what this application is all about.

1141_Newton’s Method.png

Let's assume that we desire to approximate the solution to f (x) = 0 and let's also assume that we have somehow found an initial approximation to this solution say, x0. This initial approximation is perhaps not all that good and therefore we'd like to discover a better approximation. It is easy enough to do.  Firstly we will get the tangent line to f ( x )at x0.

y = f ( x0 ) + f ′ ( x0 ) ( x - x0 )

Now, take a look at the graph below.

The blue line (if you're reading this in color anyway...) is the tangent line at x0. We can illustrate that this line will cross the x-axis much closer to the actual solution to the equation than x0 does.  Let's call this point where the tangent at x0 crosses the x-axis x1 and we'll utilizes this point as our new approximation to the solution.

Therefore, how do we determine this point? Well we know it's coordinates, ( x1 ,0) , and we know that it's on the tangent line therefore plug this point into the tangent line & solve out for x1 as follows,

0 = f ( x0 ) + f ′ ( x0 ) ( x1 - x0 )

x - x0 = -  f (x0 ) /f ′ ( x0 )

x1 = x0  - (f ( x0 ) /f ′ ( x0 ))

Therefore, we can determine the new approximation provided the derivative isn't zero at the original approximation.

Now we repeat the whole procedure to determine an even better approximation. We build up the tangent line to f ( x ) at x1 and utilizes its root, that we'll call x2, as a new approximation to the actual solution.  If we do it we will arrive at the given formula.

                  x2= x1 - (f ( x1 ) /f ′ ( x1 ))

This point is also illustrated on the graph above and we can illustrated from this graph that if we continue following this procedure will get a sequence of numbers which are getting very close the real solution. This procedure is called Newton's Method.


Related Discussions:- Approximating solutions to equations newtons method

Factors or multiples, long ago, people decided to divide the day into units...

long ago, people decided to divide the day into units called hours. they choose 24 as the number of hours in one day. why is 24 a more convenient choice than 23 or 25?

Multiply 3 (x + 4) = 3x + 12 to find out the total perimeter, Jake required...

Jake required to find out the perimeter of an equilateral triangle whose sides measure x + 4 cm each. Jake realized that he could multiply 3 (x + 4) = 3x + 12 to find out the total

Whta is truth table, What is a truth table? Distinguish between Tautology &...

What is a truth table? Distinguish between Tautology & Contradiction?

construct an isosceles triangle, 1. Construct an isosceles triangle whose ...

1. Construct an isosceles triangle whose base is 7cm and altitude 4cm and then construct another similar triangle whose sides are 1/2 times the corresponding sides of the isosceles

The probability that five randomly selected 3-year old snake, The probabili...

The probability that a randomly selected 3-year old garter snake will live to be 4 years old is .54 (assume results are independent).  What is the probability that five randomly se

Derivative for the trig function, Derivative for the trig function: We'll ...

Derivative for the trig function: We'll begin with finding the derivative of the sine function. To do this we will have to utilize the definition of the derivative. It's been wher

Finding the LCM, what is the LCM of 18, 56 and 104 show working

what is the LCM of 18, 56 and 104 show working

What is partially ordered set, What is Partially Ordered Set?  Let  S = {a,...

What is Partially Ordered Set?  Let  S = {a,b,c} and A = P(S). Draw the Hasse diagram of the poset A with the partial order ⊆ (set inclusion).   Ans: Let R be a relation define

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd