Approximating solutions to equations newtons method, Mathematics

Assignment Help:

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion and actually we've solved out quite a few equations by ourselves to this point.  In all the instances we've looked at to this instance we were capable to in fact find the solutions, however it's not always probable to do that exactly and/or do the work by hand.

That is where this application comes into play.  Therefore, let's see what this application is all about.

1141_Newton’s Method.png

Let's assume that we desire to approximate the solution to f (x) = 0 and let's also assume that we have somehow found an initial approximation to this solution say, x0. This initial approximation is perhaps not all that good and therefore we'd like to discover a better approximation. It is easy enough to do.  Firstly we will get the tangent line to f ( x )at x0.

y = f ( x0 ) + f ′ ( x0 ) ( x - x0 )

Now, take a look at the graph below.

The blue line (if you're reading this in color anyway...) is the tangent line at x0. We can illustrate that this line will cross the x-axis much closer to the actual solution to the equation than x0 does.  Let's call this point where the tangent at x0 crosses the x-axis x1 and we'll utilizes this point as our new approximation to the solution.

Therefore, how do we determine this point? Well we know it's coordinates, ( x1 ,0) , and we know that it's on the tangent line therefore plug this point into the tangent line & solve out for x1 as follows,

0 = f ( x0 ) + f ′ ( x0 ) ( x1 - x0 )

x - x0 = -  f (x0 ) /f ′ ( x0 )

x1 = x0  - (f ( x0 ) /f ′ ( x0 ))

Therefore, we can determine the new approximation provided the derivative isn't zero at the original approximation.

Now we repeat the whole procedure to determine an even better approximation. We build up the tangent line to f ( x ) at x1 and utilizes its root, that we'll call x2, as a new approximation to the actual solution.  If we do it we will arrive at the given formula.

                  x2= x1 - (f ( x1 ) /f ′ ( x1 ))

This point is also illustrated on the graph above and we can illustrated from this graph that if we continue following this procedure will get a sequence of numbers which are getting very close the real solution. This procedure is called Newton's Method.


Related Discussions:- Approximating solutions to equations newtons method

F distribution, The F Distribution The F distribution is the dis...

The F Distribution The F distribution is the distribution of the ratio of 2 random variables. Both random variables have yet another distribution, called the c 2 Distri

Algegra, what''s the main purpose of algebra in our daily life

what''s the main purpose of algebra in our daily life

Term paper topics, please suggest me that how can i get the term papers top...

please suggest me that how can i get the term papers topics?

Differentiate inside function in chain rule, Differentiate following. f ...

Differentiate following. f ( x ) = sin (3x 2   + x ) Solution It looks as the outside function is the sine & the inside function is 3x 2 +x. The derivative is then.

Decision trees and sub sequential decisions, Decision Trees And Sub Sequent...

Decision Trees And Sub Sequential Decisions A decision tree is a graphic diagram of different decision alternatives and the sequence of events like if they were branches of a t

Size of the penumbra, With reference to Fig. 1(a) show that the magnificati...

With reference to Fig. 1(a) show that the magnification of an object is given by M=SID/SOD. With reference to Fig. 1(b) show that the size of the penumbra (blur) f is given by f

Graphs, the value of y for which x=-1.5

the value of y for which x=-1.5

Monomial, express the area of a square with sides of length 5ab as monomial...

express the area of a square with sides of length 5ab as monomial

rules for solving linear in-equations - linear algebra, Explain what are t...

Explain what are the Rules for solving linear in-equations?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd