Approximating solutions to equations newtons method, Mathematics

Assignment Help:

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion and actually we've solved out quite a few equations by ourselves to this point.  In all the instances we've looked at to this instance we were capable to in fact find the solutions, however it's not always probable to do that exactly and/or do the work by hand.

That is where this application comes into play.  Therefore, let's see what this application is all about.

1141_Newton’s Method.png

Let's assume that we desire to approximate the solution to f (x) = 0 and let's also assume that we have somehow found an initial approximation to this solution say, x0. This initial approximation is perhaps not all that good and therefore we'd like to discover a better approximation. It is easy enough to do.  Firstly we will get the tangent line to f ( x )at x0.

y = f ( x0 ) + f ′ ( x0 ) ( x - x0 )

Now, take a look at the graph below.

The blue line (if you're reading this in color anyway...) is the tangent line at x0. We can illustrate that this line will cross the x-axis much closer to the actual solution to the equation than x0 does.  Let's call this point where the tangent at x0 crosses the x-axis x1 and we'll utilizes this point as our new approximation to the solution.

Therefore, how do we determine this point? Well we know it's coordinates, ( x1 ,0) , and we know that it's on the tangent line therefore plug this point into the tangent line & solve out for x1 as follows,

0 = f ( x0 ) + f ′ ( x0 ) ( x1 - x0 )

x - x0 = -  f (x0 ) /f ′ ( x0 )

x1 = x0  - (f ( x0 ) /f ′ ( x0 ))

Therefore, we can determine the new approximation provided the derivative isn't zero at the original approximation.

Now we repeat the whole procedure to determine an even better approximation. We build up the tangent line to f ( x ) at x1 and utilizes its root, that we'll call x2, as a new approximation to the actual solution.  If we do it we will arrive at the given formula.

                  x2= x1 - (f ( x1 ) /f ′ ( x1 ))

This point is also illustrated on the graph above and we can illustrated from this graph that if we continue following this procedure will get a sequence of numbers which are getting very close the real solution. This procedure is called Newton's Method.


Related Discussions:- Approximating solutions to equations newtons method

Average cost function, Average cost function : Now let's turn our attentio...

Average cost function : Now let's turn our attention to the average cost function. If C ( x ) is the cost function for some of the  item then the average cost function is,

How many dollars did they raise the first two days, The freshman class is p...

The freshman class is participating in a fundraiser. Their target is to raise $5,000. After the first two days of the fundraiser, they have raised 32 percent of their goal. How man

Calculate the amount of money a person has left after death, When Ms. Jones...

When Ms. Jones retired, she received a lump sum of $1,000,000 from her pension plan.  She then invested this sum in an annuity account that would pay her an equal amount at the end

Find out the product of 5.2 × 10^3 and 6.5 × 10^7, Find out the product of ...

Find out the product of 5.2 × 10 3 and 6.5 × 10 7 . Write your answer in scientific notation. To multiply numbers written within scienti?c notation,  multiply the ?rst numbers

Mixing problems, In these problems we will begin with a substance which is ...

In these problems we will begin with a substance which is dissolved in a liquid. Liquid will be entering as well as leaving a holding tank. The liquid entering the tank may or may

Ratio, which ratio is largar. 1. 15:16 or 24:25

which ratio is largar. 1. 15:16 or 24:25

Math, what is division

what is division

Velocity of a skydiver (calculus), using v=g/k(1-e^-kt) find the velocity o...

using v=g/k(1-e^-kt) find the velocity of the skydiver when k is 0.015

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd