Approximating solutions to equations newtons method, Mathematics

Assignment Help:

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion and actually we've solved out quite a few equations by ourselves to this point.  In all the instances we've looked at to this instance we were capable to in fact find the solutions, however it's not always probable to do that exactly and/or do the work by hand.

That is where this application comes into play.  Therefore, let's see what this application is all about.

1141_Newton’s Method.png

Let's assume that we desire to approximate the solution to f (x) = 0 and let's also assume that we have somehow found an initial approximation to this solution say, x0. This initial approximation is perhaps not all that good and therefore we'd like to discover a better approximation. It is easy enough to do.  Firstly we will get the tangent line to f ( x )at x0.

y = f ( x0 ) + f ′ ( x0 ) ( x - x0 )

Now, take a look at the graph below.

The blue line (if you're reading this in color anyway...) is the tangent line at x0. We can illustrate that this line will cross the x-axis much closer to the actual solution to the equation than x0 does.  Let's call this point where the tangent at x0 crosses the x-axis x1 and we'll utilizes this point as our new approximation to the solution.

Therefore, how do we determine this point? Well we know it's coordinates, ( x1 ,0) , and we know that it's on the tangent line therefore plug this point into the tangent line & solve out for x1 as follows,

0 = f ( x0 ) + f ′ ( x0 ) ( x1 - x0 )

x - x0 = -  f (x0 ) /f ′ ( x0 )

x1 = x0  - (f ( x0 ) /f ′ ( x0 ))

Therefore, we can determine the new approximation provided the derivative isn't zero at the original approximation.

Now we repeat the whole procedure to determine an even better approximation. We build up the tangent line to f ( x ) at x1 and utilizes its root, that we'll call x2, as a new approximation to the actual solution.  If we do it we will arrive at the given formula.

                  x2= x1 - (f ( x1 ) /f ′ ( x1 ))

This point is also illustrated on the graph above and we can illustrated from this graph that if we continue following this procedure will get a sequence of numbers which are getting very close the real solution. This procedure is called Newton's Method.


Related Discussions:- Approximating solutions to equations newtons method

How to calculate mode, Q. How to calculate Mode? The mode of a data set...

Q. How to calculate Mode? The mode of a data set is the value that is repeated most often in the data set. It has the highest frequency. There can be one, more than one, or n

Triangles, if triangle abc is similar to def and ab/de=3/4 find the ratio a...

if triangle abc is similar to def and ab/de=3/4 find the ratio af their perimeter and area

Systematic sampling, Systematic Sampling Systematic sampling is a part ...

Systematic Sampling Systematic sampling is a part of simple random sampling in descending or ascending orders. In systematic sampling a sample is drawn according to some predet

SHOPPERS`STOP, 3. How are Indian customers visiting Shoppers’ Stop any diff...

3. How are Indian customers visiting Shoppers’ Stop any different from customers of developed western countries? 4. How should Shoppers’ Stop develop its demand forecasts?

Multiplication and division should be learnt intermeshed, E1) Do you agree ...

E1) Do you agree that multiplication and division should be learnt intermeshed with each other, or not? Give reasons for your answer.  E2) How would you explain to children wh

Real numbers, prove root 2 as irrational number

prove root 2 as irrational number

Mental math, i dint get how to do math promblems

i dint get how to do math promblems

What is the value of tan in terms of sin, What is the value of tan? in term...

What is the value of tan? in terms of sin?. Ans:    Tan ? = S i n ?/ C os ? Tan ? = S i n ? / √1 - S i n   2?

Evaluating functions, Next we have to talk about evaluating functions.  Eva...

Next we have to talk about evaluating functions.  Evaluating a function is in fact nothing more than asking what its value is for particular values of x. Another way of looking at

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd