Approximating solutions to equations newtons method, Mathematics

Assignment Help:

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion and actually we've solved out quite a few equations by ourselves to this point.  In all the instances we've looked at to this instance we were capable to in fact find the solutions, however it's not always probable to do that exactly and/or do the work by hand.

That is where this application comes into play.  Therefore, let's see what this application is all about.

1141_Newton’s Method.png

Let's assume that we desire to approximate the solution to f (x) = 0 and let's also assume that we have somehow found an initial approximation to this solution say, x0. This initial approximation is perhaps not all that good and therefore we'd like to discover a better approximation. It is easy enough to do.  Firstly we will get the tangent line to f ( x )at x0.

y = f ( x0 ) + f ′ ( x0 ) ( x - x0 )

Now, take a look at the graph below.

The blue line (if you're reading this in color anyway...) is the tangent line at x0. We can illustrate that this line will cross the x-axis much closer to the actual solution to the equation than x0 does.  Let's call this point where the tangent at x0 crosses the x-axis x1 and we'll utilizes this point as our new approximation to the solution.

Therefore, how do we determine this point? Well we know it's coordinates, ( x1 ,0) , and we know that it's on the tangent line therefore plug this point into the tangent line & solve out for x1 as follows,

0 = f ( x0 ) + f ′ ( x0 ) ( x1 - x0 )

x - x0 = -  f (x0 ) /f ′ ( x0 )

x1 = x0  - (f ( x0 ) /f ′ ( x0 ))

Therefore, we can determine the new approximation provided the derivative isn't zero at the original approximation.

Now we repeat the whole procedure to determine an even better approximation. We build up the tangent line to f ( x ) at x1 and utilizes its root, that we'll call x2, as a new approximation to the actual solution.  If we do it we will arrive at the given formula.

                  x2= x1 - (f ( x1 ) /f ′ ( x1 ))

This point is also illustrated on the graph above and we can illustrated from this graph that if we continue following this procedure will get a sequence of numbers which are getting very close the real solution. This procedure is called Newton's Method.


Related Discussions:- Approximating solutions to equations newtons method

The mean value theorem, The Mean Value Theorem : In this section we will ...

The Mean Value Theorem : In this section we will discuss the Mean Value Theorem.  Before we going through the Mean Value Theorem we have to cover the following theorem. Ro

Characteristics of exponential smoothing, Characteristics of Exponential Sm...

Characteristics of Exponential Smoothing 1. More weight is described to the most recent data. 2. All past data are incorporated not like in moving averages. 3. Les

Properties of definite integral, Properties 1.  ∫ b a f ( x ) dx = -∫ ...

Properties 1.  ∫ b a f ( x ) dx = -∫ b a f ( x ) dx .  We can interchange the limits on any definite integral, all that we have to do is tack a minus sign onto the integral

Java program for sorting algorithms, Introduction: In this project, yo...

Introduction: In this project, you will explore a few sorting algorithms. You will also test their efficiency by both timing how long a given sorting operation takes and count

Word problems involving money, Word Problems Involving Money: The prom...

Word Problems Involving Money: The promoter of a track meet engages a 6,000 seat armory.  He needs to gross $15,000. The price of children's tickets is to be one-half the pric

Polya’s first and second principle:-mathematical problem, Mathematical Prob...

Mathematical Problem Solving In 1945, mathematician George Polya (1887-1985) published a book titled How To Solve It in which he demonstrated his approach to solving problems.

what are the coordinates of the vertex , Use the graph of y = x2 - 6x  to ...

Use the graph of y = x2 - 6x  to answer the following: a)         Without solving the equation (or factoring), determine the solutions to the equation  x 2 - 6x = 0  usi

What is the width of the walkway in feet, A garden in the shape of a rectan...

A garden in the shape of a rectangle is surrounded through a walkway of uniform width. The dimensions of the garden only are 35 by 24. The field of the garden and the walkway toget

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd