Applications of binary trees, Data Structure & Algorithms

Assignment Help:

In computer programming, Trees are utilized enormously. These can be utilized for developing database search times (binary search trees, AVL trees, 2-3 trees, red-black trees), Game programming (decision trees, minimax trees,  pathfinding trees),

3D graphics programming (octrees, quadtrees,), Arithmetic Scripting languages (arithmetic precedence trees), Data compression (Huffman trees), and file systems (sparse indexed trees, B- trees, tries ). Figure illustrated a tic-tac-toe game tree illustrating various stages of game.

218_APPLICATIONS of  binary TREES.png

Figure: A tic-tac-toe game tree showing various stages of game

In the entire above scenario except the first one, ultimately the player (playing with X) looses in subsequent moves.

The General tree (also known as Linked Trees) is a generic tree which has one root node, and each node in the tree can have limitless number of child nodes. One popular employ of this kind of tree is in Family Tree programs. In game programming, several games use these types of trees for decision-making processes as illustrated above for tic-tac-toe. A computer program might have to make a decision depend on an event that happened.

But it is just a simple tree for demonstration. A more complicated AI decision tree would absolutely have a lot more options. The interesting thing regarding using a tree for decision-making is that the options are cut down for each level of the tree as we go down, very much simplifying the subsequent moves & raising the speed at which the AI program makes a decision.

The big problem along with tree based level progressions, but, is that sometimes the tree can get too large & complex as the number of moves (level in a tree) enhance. Suppose a game offering just two choices for every move to the next level at the end of every level in a ten level game. This would need a tree of 1023 nodes to be created.

Binary trees are utilized for searching keys. Such trees are called Binary Search trees

A Binary Search Tree (BST) is a binary tree having the given properties:

1.  Always the key of a node is greater than the keys of the nodes in its left sub-tree

2.  Always the key of a node is smaller than the keys of the nodes in its right sub-tree

It might be seen that while nodes of a BST are traversed by inorder traversal, the keys appear in sorted order:

inorder(root)

{ inorder(root.left) print(root.key) inorder(root.right)

}

Binary Trees are also utilized for evaluating expressions.

A binary tree can be utilized to represent & evaluate arithmetic expressions.

1. If a node is a leaf, then the element in it indicates the value.

2. If this is not leaf, then appraise the children & join them in according to the operation indicated by the element.


Related Discussions:- Applications of binary trees

Doubly linked lists-implementation, In any singly linked list, each of the ...

In any singly linked list, each of the elements contains a pointer to the next element. We have illustrated this before. In single linked list, traversing is probable only in one d

Four applications or implementation of the stack, Q. Write down any four ap...

Q. Write down any four applications or implementation of the stack.                                     Ans. (i)       The Conversion of infix to postfix form (ii)

Graph search using iterative deepening, Prove that uniform cost search and ...

Prove that uniform cost search and breadth- first search with constant steps are optimal when used with the Graph-Search algorithm (see Figure). Show a state space with varying ste

Process of decision making under uncertainty, (a) Describe the steps involv...

(a) Describe the steps involved in the process of decision making under uncertainty. (b) Explain the following principles of decision making: (i) Laplace, (ii) Hurwicz. (c

Determination of time complexity, Determination of Time Complexity The...

Determination of Time Complexity The RAM Model The random access model (RAM) of computation was devised through John von Neumann to study algorithms. In computer science,

Program, What is a first-in-first-out data structure ? Write algorithms to...

What is a first-in-first-out data structure ? Write algorithms to perform the following operations on it – create, insertion, deletion, for testing overflow and empty conditions.

Write an algorithm for binary search., Write an algorithm for binary search...

Write an algorithm for binary search. Algorithm for Binary Search 1.  if (low> high) 2.  return (-1) 3.  Mid = (low + high)/2 4.  if ( X = = a[mid]) 5.  return (mid); 6.

Sorting, how to do a merge sorting

how to do a merge sorting

Explain complexity of an algorithm, Complexity of an Algorithm An algo...

Complexity of an Algorithm An algorithm is a sequence of steps to solve a problem; there may be more than one algorithm to solve a problem. The choice of a particular algorith

Rules for abstract data type-tree, null(nil) = true                     // ...

null(nil) = true                     // nil refer for empty tree null(fork(e, T, T'))= false   //  e : element , T and T are two sub tree leaf(fork(e, nil, nil)) = true leaf(

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd