Applications of binary trees, Data Structure & Algorithms

Assignment Help:

In computer programming, Trees are utilized enormously. These can be utilized for developing database search times (binary search trees, AVL trees, 2-3 trees, red-black trees), Game programming (decision trees, minimax trees,  pathfinding trees),

3D graphics programming (octrees, quadtrees,), Arithmetic Scripting languages (arithmetic precedence trees), Data compression (Huffman trees), and file systems (sparse indexed trees, B- trees, tries ). Figure illustrated a tic-tac-toe game tree illustrating various stages of game.

218_APPLICATIONS of  binary TREES.png

Figure: A tic-tac-toe game tree showing various stages of game

In the entire above scenario except the first one, ultimately the player (playing with X) looses in subsequent moves.

The General tree (also known as Linked Trees) is a generic tree which has one root node, and each node in the tree can have limitless number of child nodes. One popular employ of this kind of tree is in Family Tree programs. In game programming, several games use these types of trees for decision-making processes as illustrated above for tic-tac-toe. A computer program might have to make a decision depend on an event that happened.

But it is just a simple tree for demonstration. A more complicated AI decision tree would absolutely have a lot more options. The interesting thing regarding using a tree for decision-making is that the options are cut down for each level of the tree as we go down, very much simplifying the subsequent moves & raising the speed at which the AI program makes a decision.

The big problem along with tree based level progressions, but, is that sometimes the tree can get too large & complex as the number of moves (level in a tree) enhance. Suppose a game offering just two choices for every move to the next level at the end of every level in a ten level game. This would need a tree of 1023 nodes to be created.

Binary trees are utilized for searching keys. Such trees are called Binary Search trees

A Binary Search Tree (BST) is a binary tree having the given properties:

1.  Always the key of a node is greater than the keys of the nodes in its left sub-tree

2.  Always the key of a node is smaller than the keys of the nodes in its right sub-tree

It might be seen that while nodes of a BST are traversed by inorder traversal, the keys appear in sorted order:

inorder(root)

{ inorder(root.left) print(root.key) inorder(root.right)

}

Binary Trees are also utilized for evaluating expressions.

A binary tree can be utilized to represent & evaluate arithmetic expressions.

1. If a node is a leaf, then the element in it indicates the value.

2. If this is not leaf, then appraise the children & join them in according to the operation indicated by the element.


Related Discussions:- Applications of binary trees

Algorithm, algorithm to search a node in linked list

algorithm to search a node in linked list

Data structure arrays, In this unit, we learned the data structure arrays f...

In this unit, we learned the data structure arrays from the application point of view and representation point of view. Two applications that are representation of a sparse matrix

Recursive and iterative handling of a binary search tree, This section pres...

This section prescribes additional exercise with the recursive and iterative handling of a binary search tree. Adding to the Binary Search Tree Recursively Add implementation

Psedocodes, write a pseudocode to input the top speed (in km''s/hours) of 5...

write a pseudocode to input the top speed (in km''s/hours) of 5000 cars output the fastest speed and the slowest speed output the average (mean) speed of all the 5000 cars answers

Reverse order of elements on a slack, Q. Describe the representations of gr...

Q. Describe the representations of graph. Represent the graph which is given to us using any two methods Ans: The different ways by which we can represent graphs are:

Consistent heuristic function - graph search, Consistent Heuristic Function...

Consistent Heuristic Function - Graph Search Recall the notions of consistency and admissibility for an A* search heuristic. a. Consider a graph with four nodes S, A, B, C,

Pipeling, Asktypes of pipelining question #Minimum 100 words accepted#

Asktypes of pipelining question #Minimum 100 words accepted#

Create a function to show data structure, Given a number that is represente...

Given a number that is represented in your data structure, you will need a function that prints it out in base 215 in such a way that its contents can be checked for correctness. Y

Standard ways of traversing a graph, Q. Which are the two standard ways of ...

Q. Which are the two standard ways of traversing a graph?  Explain them with an example of each.  Ans:   T he two ways of traversing a graph are written below

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd