Applications of binary trees, Data Structure & Algorithms

Assignment Help:

In computer programming, Trees are utilized enormously. These can be utilized for developing database search times (binary search trees, AVL trees, 2-3 trees, red-black trees), Game programming (decision trees, minimax trees,  pathfinding trees),

3D graphics programming (octrees, quadtrees,), Arithmetic Scripting languages (arithmetic precedence trees), Data compression (Huffman trees), and file systems (sparse indexed trees, B- trees, tries ). Figure illustrated a tic-tac-toe game tree illustrating various stages of game.

218_APPLICATIONS of  binary TREES.png

Figure: A tic-tac-toe game tree showing various stages of game

In the entire above scenario except the first one, ultimately the player (playing with X) looses in subsequent moves.

The General tree (also known as Linked Trees) is a generic tree which has one root node, and each node in the tree can have limitless number of child nodes. One popular employ of this kind of tree is in Family Tree programs. In game programming, several games use these types of trees for decision-making processes as illustrated above for tic-tac-toe. A computer program might have to make a decision depend on an event that happened.

But it is just a simple tree for demonstration. A more complicated AI decision tree would absolutely have a lot more options. The interesting thing regarding using a tree for decision-making is that the options are cut down for each level of the tree as we go down, very much simplifying the subsequent moves & raising the speed at which the AI program makes a decision.

The big problem along with tree based level progressions, but, is that sometimes the tree can get too large & complex as the number of moves (level in a tree) enhance. Suppose a game offering just two choices for every move to the next level at the end of every level in a ten level game. This would need a tree of 1023 nodes to be created.

Binary trees are utilized for searching keys. Such trees are called Binary Search trees

A Binary Search Tree (BST) is a binary tree having the given properties:

1.  Always the key of a node is greater than the keys of the nodes in its left sub-tree

2.  Always the key of a node is smaller than the keys of the nodes in its right sub-tree

It might be seen that while nodes of a BST are traversed by inorder traversal, the keys appear in sorted order:

inorder(root)

{ inorder(root.left) print(root.key) inorder(root.right)

}

Binary Trees are also utilized for evaluating expressions.

A binary tree can be utilized to represent & evaluate arithmetic expressions.

1. If a node is a leaf, then the element in it indicates the value.

2. If this is not leaf, then appraise the children & join them in according to the operation indicated by the element.


Related Discussions:- Applications of binary trees

Physical database design and sql queries, In this part, students are allowe...

In this part, students are allowed to implement the following simplifications in their table and data design. o Availability for the beauty therapists don't have to be considere

Determine about the logic gates, Determine about the logic gates Many e...

Determine about the logic gates Many electronic circuits operate using binary logic gates. Logic gates essentially process signals that represent true or false or equivalent i.

Explain time complexity, Time Complexity, Big O notation The amount of ...

Time Complexity, Big O notation The amount of time needed by an algorithm to run to its completion is referred as time complexity. The asymptotic running time of an algorithm i

Frequency count, what is frequency count with examble

what is frequency count with examble

Implementation of stack, In this unit, we have learned how the stacks are i...

In this unit, we have learned how the stacks are implemented using arrays and using liked list. Also, the advantages and disadvantages of using these two schemes were discussed. Fo

Program segment for quick sort, Illustrates the program segment for Quick s...

Illustrates the program segment for Quick sort. It uses recursion. Program 1: Quick Sort Quicksort(A,m,n) int A[ ],m,n { int i, j, k; if m { i=m; j=n+1; k

What is the best case complexity of quick sort, What is the best case compl...

What is the best case complexity of quick sort In the best case complexity, the pivot is in the middle.

Algorithm for pre-order traversal, Hear is given a set of input representin...

Hear is given a set of input representing the nodes of a binary tree, write a non recursive algorithm that must be able to give the output in three traversal orders. Write down an

State algorithm to insert node p at the end of a linked list, Algo rithm t...

Algo rithm to Insert a Node p at the End of a Linked List is explained below Step1:   [check for space] If new1= NULL output "OVERFLOW" And exit Step2:   [Allocate fr

BST has two children, If a node in a BST has two children, then its inorder...

If a node in a BST has two children, then its inorder predecessor has No right child

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd