Application of sutherland hodgman polygon clipping, Computer Graphics

Assignment Help:

For good understanding of the application of the rules specified above see the following figure, where the shaded region demonstrates the clipped polygon.

801_Application of Sutherland Hodgman Polygon Clipping.png

Figure: Sutherland-Hodgman Polygon Clipping

Pseudo code for Sutherland - Hodgman Algorithm

Define variables

In VertexArray is the array of input polygon vertices

outVerteArray is the array of output polygon vertices

Nin is the number of entries in inVertexArray

Nout is the number of entries in outVertexArray

n is the number of edges of the clip polygon

ClipEdge[x] is the xth edge of clip polygon defined by a pair of vertices

s, p are the start and end point respectively of current polygon edge

i is the intersection point with a clip boundary

j is the vertex loop counter

Define Functions

AddNewVertex(newVertex, Nout, outVertexArray)

: Adds newVertex to outVertexArray and then updates Nout

InsideTest(testVertex, clipEdge[x])

: Checks whether the vertex lies inside the clip edge or not;

  retures         TRUE is inside else returns FALSE

Intersect (first, second, clipEdge[x])

: Clip polygon edge (first, second) against clipEdge[x], outputs the intersection point

{                                        :  begin main

x = 1

while (x ≤ n)                     : Loop through all the n clip edges

{

Nout = 0                            : Flush the outVertexArray

s = inVertexArray[Nin] : Start with the last vertex in inVertexArray

for j = 1 to Nin do             : Loop through Nin number of polygon vertices (edges)

{

p = inVertexArrray[j]

if InsideTest(p, clipEdge[x] = = TRUE then                     : Case A

and D

if InsideTest(s, clipEdge[x] = = TRUE then

AddNewVertex(p, Nout, outVertexArray)                        : Case A

else

i = Intersect(s, p, clipEdge[x])                           :  Case D

AddNewVertex(i, Nout, outVertexArray)

AddNewVertex(p, Nout, outVertexArray)

end if

else      :  i.e. if InsideTest(p, clipEdge[x] = = FALSE

(Cases 2 and 3)

if InsideTest(s, clipEdge[x]) = =TRUE then                     : Case B

{

 Intersect(s, p, clipEdge[x])

AddNewVertex(i, Nout, outVertexArray)

end if                                        : No action for case C

 

s = p                                         : Advance to next pair of vertices j = j + 1

end if                                         :  end {for}

}

x = x + 1                                     : Proceed to the next ClipEdge[x +1]

Nin = Nout

inVertexArray = outVertexArray            :  The output vertex array for the current clip edge becomes the input vertex array for the next clip edge

}                                        : end while

}                                        : end main


Related Discussions:- Application of sutherland hodgman polygon clipping

Electronic encyclopedia, Electronic Encyclopedia : This is the applica...

Electronic Encyclopedia : This is the application of multimedia for the creation of an encyclopedia along with millions of entries and hypertext cross references covering a br

Image capture formats, Image Capture Formats: Video cameras appear in...

Image Capture Formats: Video cameras appear in two various image capture formats: progressive and interlaced scan. Interlaced Scan It is a technique of enhancing the

Will the shape of the resulting b-spline curve change, If the spacing betwe...

If the spacing between the knot sequence is uniformly doubled, will the shape of the resulting B-spline curve change?  Justify your answer.

Derive the common transformation of parallel projection, Derive the common ...

Derive the common transformation of parallel projection into the xy-plane in the direction of projection d=aI+bJ+cK. Solution: The common transformation of parallel projection

What is orthographic parallel projection, What is orthographic parallel pro...

What is orthographic parallel projection?  When the direction of the projection is normal (perpendicular) to the view plane then the projection is called as orthographic paral

Number system, Perform the indicated base conversions 548 to base 5

Perform the indicated base conversions 548 to base 5

Cohen sutherland, explain cohen sutherland line clipping algorithm

explain cohen sutherland line clipping algorithm

What do you understand by complementary colors, Problem : a. (i) Giv...

Problem : a. (i) Give another name for adjacent color. (ii) Describe briefly what do you understand by an adjacent color? b. (i) Describe briefly what do you unders

Cyrus beck algorithm - line clipping algorithm, Cyrus Beck Algorithm - Line...

Cyrus Beck Algorithm - Line Clipping Algorithm Cyrus Beck Line clipping algorithm is actually, a parametric line-clipping algorithm. The term parametric means that we requi

Archeology-applications for computer animation, Archeology: along with the...

Archeology: along with the advent of the computer, the archeologist has obtained a new tool, computer animation. An object-model can be made comparatively quick and without any we

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd