Application of sutherland hodgman polygon clipping, Computer Graphics

Assignment Help:

For good understanding of the application of the rules specified above see the following figure, where the shaded region demonstrates the clipped polygon.

801_Application of Sutherland Hodgman Polygon Clipping.png

Figure: Sutherland-Hodgman Polygon Clipping

Pseudo code for Sutherland - Hodgman Algorithm

Define variables

In VertexArray is the array of input polygon vertices

outVerteArray is the array of output polygon vertices

Nin is the number of entries in inVertexArray

Nout is the number of entries in outVertexArray

n is the number of edges of the clip polygon

ClipEdge[x] is the xth edge of clip polygon defined by a pair of vertices

s, p are the start and end point respectively of current polygon edge

i is the intersection point with a clip boundary

j is the vertex loop counter

Define Functions

AddNewVertex(newVertex, Nout, outVertexArray)

: Adds newVertex to outVertexArray and then updates Nout

InsideTest(testVertex, clipEdge[x])

: Checks whether the vertex lies inside the clip edge or not;

  retures         TRUE is inside else returns FALSE

Intersect (first, second, clipEdge[x])

: Clip polygon edge (first, second) against clipEdge[x], outputs the intersection point

{                                        :  begin main

x = 1

while (x ≤ n)                     : Loop through all the n clip edges

{

Nout = 0                            : Flush the outVertexArray

s = inVertexArray[Nin] : Start with the last vertex in inVertexArray

for j = 1 to Nin do             : Loop through Nin number of polygon vertices (edges)

{

p = inVertexArrray[j]

if InsideTest(p, clipEdge[x] = = TRUE then                     : Case A

and D

if InsideTest(s, clipEdge[x] = = TRUE then

AddNewVertex(p, Nout, outVertexArray)                        : Case A

else

i = Intersect(s, p, clipEdge[x])                           :  Case D

AddNewVertex(i, Nout, outVertexArray)

AddNewVertex(p, Nout, outVertexArray)

end if

else      :  i.e. if InsideTest(p, clipEdge[x] = = FALSE

(Cases 2 and 3)

if InsideTest(s, clipEdge[x]) = =TRUE then                     : Case B

{

 Intersect(s, p, clipEdge[x])

AddNewVertex(i, Nout, outVertexArray)

end if                                        : No action for case C

 

s = p                                         : Advance to next pair of vertices j = j + 1

end if                                         :  end {for}

}

x = x + 1                                     : Proceed to the next ClipEdge[x +1]

Nin = Nout

inVertexArray = outVertexArray            :  The output vertex array for the current clip edge becomes the input vertex array for the next clip edge

}                                        : end while

}                                        : end main


Related Discussions:- Application of sutherland hodgman polygon clipping

Softwares for computer animation, Software for computer animation Wh...

Software for computer animation Whether you might have the excellent hardware in the world, but without a high-quality software package, your hardware can act nothing. There

2-d and 3-d transformations, 2-D and 3-D Transformations Previously, w...

2-D and 3-D Transformations Previously, we have presented approaches for the generation of polygonal regions and lines. We identified that once the objects are produced, the v

Archeology-applications for computer animation, Archeology: along with the...

Archeology: along with the advent of the computer, the archeologist has obtained a new tool, computer animation. An object-model can be made comparatively quick and without any we

Midpoint circle generation algorithm, Midpoint circle generation algorithm ...

Midpoint circle generation algorithm This makes use of a circle function. Based on this circle function, a decision parameter is created which is used to decide successive pixe

Animation, name some of the standard motion in key frames

name some of the standard motion in key frames

What are the features found in CAD, What are the features found in CAD ...

What are the features found in CAD Features generally found in a CAD package involve: - 2D and 3D modelling - Wire frame - Library of parts that can be used in new dra

Geometric continuity - properties of bezier curves, Geometric continuity - ...

Geometric continuity - Properties of Bezier Curves Geometric continuity is the other process to join two successive curve sections. G 0 continuity is the similar as parametri

Line segment that joining by using bresenham line algorithm, Sketch Line Se...

Sketch Line Segment That Joining By Using Bresenham Line Algorithm Example: Sketch line segment that joining (20, 10) and (25, 14) by using Bresenham line generation algorit

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd