Application of sutherland hodgman polygon clipping, Computer Graphics

Assignment Help:

For good understanding of the application of the rules specified above see the following figure, where the shaded region demonstrates the clipped polygon.

801_Application of Sutherland Hodgman Polygon Clipping.png

Figure: Sutherland-Hodgman Polygon Clipping

Pseudo code for Sutherland - Hodgman Algorithm

Define variables

In VertexArray is the array of input polygon vertices

outVerteArray is the array of output polygon vertices

Nin is the number of entries in inVertexArray

Nout is the number of entries in outVertexArray

n is the number of edges of the clip polygon

ClipEdge[x] is the xth edge of clip polygon defined by a pair of vertices

s, p are the start and end point respectively of current polygon edge

i is the intersection point with a clip boundary

j is the vertex loop counter

Define Functions

AddNewVertex(newVertex, Nout, outVertexArray)

: Adds newVertex to outVertexArray and then updates Nout

InsideTest(testVertex, clipEdge[x])

: Checks whether the vertex lies inside the clip edge or not;

  retures         TRUE is inside else returns FALSE

Intersect (first, second, clipEdge[x])

: Clip polygon edge (first, second) against clipEdge[x], outputs the intersection point

{                                        :  begin main

x = 1

while (x ≤ n)                     : Loop through all the n clip edges

{

Nout = 0                            : Flush the outVertexArray

s = inVertexArray[Nin] : Start with the last vertex in inVertexArray

for j = 1 to Nin do             : Loop through Nin number of polygon vertices (edges)

{

p = inVertexArrray[j]

if InsideTest(p, clipEdge[x] = = TRUE then                     : Case A

and D

if InsideTest(s, clipEdge[x] = = TRUE then

AddNewVertex(p, Nout, outVertexArray)                        : Case A

else

i = Intersect(s, p, clipEdge[x])                           :  Case D

AddNewVertex(i, Nout, outVertexArray)

AddNewVertex(p, Nout, outVertexArray)

end if

else      :  i.e. if InsideTest(p, clipEdge[x] = = FALSE

(Cases 2 and 3)

if InsideTest(s, clipEdge[x]) = =TRUE then                     : Case B

{

 Intersect(s, p, clipEdge[x])

AddNewVertex(i, Nout, outVertexArray)

end if                                        : No action for case C

 

s = p                                         : Advance to next pair of vertices j = j + 1

end if                                         :  end {for}

}

x = x + 1                                     : Proceed to the next ClipEdge[x +1]

Nin = Nout

inVertexArray = outVertexArray            :  The output vertex array for the current clip edge becomes the input vertex array for the next clip edge

}                                        : end while

}                                        : end main


Related Discussions:- Application of sutherland hodgman polygon clipping

Introduction, how can we write the introduction matter for graphicaluser in...

how can we write the introduction matter for graphicaluser interface

Archeology-applications for computer animation, Archeology: along with the...

Archeology: along with the advent of the computer, the archeologist has obtained a new tool, computer animation. An object-model can be made comparatively quick and without any we

Shading , short note on shading

short note on shading

Adobe premiere - softwares for computer animation, Adobe Premiere - Softwar...

Adobe Premiere - Softwares for computer animation It just like the name as is generated by Adobe. This is a tool used to composite digitized video, stills and applies a variet

Convert the intensity value of the current pixel, Step1:  Read a text file ...

Step1:  Read a text file which we want to hide. Step2:  Transform it into an array of its binary value. Step3: Transform this array into its equivalent one dimensional array

Key frame systems, Ask questionkms eey frame syst #Minimum 100 words accept...

Ask questionkms eey frame syst #Minimum 100 words accepted#

Determine the transformation matrix for the reflection, Determine the trans...

Determine the transformation matrix for the reflection about the line y = x. Solution: The transformation for mirror reflection regarding to the line y = x, comprises the subs

Transformation for isometric projection - transformation, Transformation fo...

Transformation for Isometric projection - Transformation Suppose that P(x,y,z) be any point in a space.  Assume as a given point P(x,y,z) is projected to the P'(x'y',z') on t

Education, Education, Training, Entertainment and Computer Aided Design ...

Education, Training, Entertainment and Computer Aided Design CAD or CADD is an acronym which depending upon who you ask, can stand for: I. Computer Assisted Design. II.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd