Application of sutherland hodgman polygon clipping, Computer Graphics

Assignment Help:

For good understanding of the application of the rules specified above see the following figure, where the shaded region demonstrates the clipped polygon.

801_Application of Sutherland Hodgman Polygon Clipping.png

Figure: Sutherland-Hodgman Polygon Clipping

Pseudo code for Sutherland - Hodgman Algorithm

Define variables

In VertexArray is the array of input polygon vertices

outVerteArray is the array of output polygon vertices

Nin is the number of entries in inVertexArray

Nout is the number of entries in outVertexArray

n is the number of edges of the clip polygon

ClipEdge[x] is the xth edge of clip polygon defined by a pair of vertices

s, p are the start and end point respectively of current polygon edge

i is the intersection point with a clip boundary

j is the vertex loop counter

Define Functions

AddNewVertex(newVertex, Nout, outVertexArray)

: Adds newVertex to outVertexArray and then updates Nout

InsideTest(testVertex, clipEdge[x])

: Checks whether the vertex lies inside the clip edge or not;

  retures         TRUE is inside else returns FALSE

Intersect (first, second, clipEdge[x])

: Clip polygon edge (first, second) against clipEdge[x], outputs the intersection point

{                                        :  begin main

x = 1

while (x ≤ n)                     : Loop through all the n clip edges

{

Nout = 0                            : Flush the outVertexArray

s = inVertexArray[Nin] : Start with the last vertex in inVertexArray

for j = 1 to Nin do             : Loop through Nin number of polygon vertices (edges)

{

p = inVertexArrray[j]

if InsideTest(p, clipEdge[x] = = TRUE then                     : Case A

and D

if InsideTest(s, clipEdge[x] = = TRUE then

AddNewVertex(p, Nout, outVertexArray)                        : Case A

else

i = Intersect(s, p, clipEdge[x])                           :  Case D

AddNewVertex(i, Nout, outVertexArray)

AddNewVertex(p, Nout, outVertexArray)

end if

else      :  i.e. if InsideTest(p, clipEdge[x] = = FALSE

(Cases 2 and 3)

if InsideTest(s, clipEdge[x]) = =TRUE then                     : Case B

{

 Intersect(s, p, clipEdge[x])

AddNewVertex(i, Nout, outVertexArray)

end if                                        : No action for case C

 

s = p                                         : Advance to next pair of vertices j = j + 1

end if                                         :  end {for}

}

x = x + 1                                     : Proceed to the next ClipEdge[x +1]

Nin = Nout

inVertexArray = outVertexArray            :  The output vertex array for the current clip edge becomes the input vertex array for the next clip edge

}                                        : end while

}                                        : end main


Related Discussions:- Application of sutherland hodgman polygon clipping

X-shear regarding the origin - 2-d and 3-d transformations, X-shear Regardi...

X-shear Regarding the Origin - 2-d and 3-d transformations Suppose an object point P(x,y) be moved to P'(x',y') in the x-direction, via the given scale parameter 'a',that is,

Intersection test - visible surface detection, Intersection Test - Visible ...

Intersection Test - Visible Surface Detection Test: It called Intersection Test also: we go for intersection test, if Min-max test fails. Now we take each edge individually

Video games, why do video game characters look better today?

why do video game characters look better today?

Application of sutherland hodgman polygon clipping, For good understanding ...

For good understanding of the application of the rules specified above see the following figure, where the shaded region demonstrates the clipped polygon. Fi

Important notes for negative accelerations, Important Notes for Negative Ac...

Important Notes for Negative Accelerations Note : Having projections of points on curve, above Y axis we will obtain a pattern similar to figure 8 that is needed to produce ne

Question, what are the steps involved in 3d transformation explain

what are the steps involved in 3d transformation explain

Persistence of phosphor - display devices, Persistence (of phosphor) - Disp...

Persistence (of phosphor) - Display devices Time it takes the emitted light from screen to decay to one-tenth of its original intensity. The point where an electron gun strikes

Draw line segment - digital differential analyzer algorithm, Example 1: Dr...

Example 1: Draw line segment from point (2, 4) to (9, 9) by using Digital Differential Analyzer algorithm. Solution: We know usual equation of line is specified via y = mx

Taxonomy of projection - viewing transformation, Taxonomy of Projection - v...

Taxonomy of Projection - viewing transformation There are different types of projections as per to the view that is essential. The subsequent figure 3 demonstrates taxonomy o

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd