application of linear function, Mathematics

Assignment Help:
four times an unknown number is equal to twice the sum of five and that unknown number

Related Discussions:- application of linear function

Compute the double integral - triangle with vertices, 1) let R be the trian...

1) let R be the triangle with vertices (0,0), (pi, pi) and (pi, -pi). using the change of variables formula u = x-y and v = x+y , compute the double integral (cos(x-y)sin(x+y) dA a

If tan2x.tan7x=1 , tan9x = (tan7x + tan2x)/(1 - tan7x*tan2x) here its give...

tan9x = (tan7x + tan2x)/(1 - tan7x*tan2x) here its given 1 - tan2x*tan7x= 0 implies tan9x = infinity since tan9x = (3tan3x - tan^3(3x))/(1 - 3tan^2 (3x)) = infinity implies

How many feet is the new length if the new area is 141, A rectangular garde...

A rectangular garden has a width of 20 feet and a length of 24 feet. If each side of the garden is increased through the similar amount, how many feet is the new length if the new

Show trigonometric functions on a graph, Q. Show Trigonometric Functions on...

Q. Show Trigonometric Functions on a Graph? Ans. By discussing the trig functions with respect to an angle in a right-angle triangle, we have only considered angles betwee

Test of homogeneity , Test of homogeneity This is concerned along with...

Test of homogeneity This is concerned along with the proposition that several populations are homogenous along with respect to some characteristic of interest for example; one

How to converting fractions to decimals explain with example, How to Conver...

How to Converting Fractions to Decimals explain with example? To convert fractions to decimals, divide the numerator by the denominator. The quotient is the decimal. Ex

Show that the function f is one-one but not onto, Consider the function f: ...

Consider the function f: N → N, where N is the set of natural numbers, defined by f(n) = n 2 +n+1. Show that the function f is one-one but not onto. Ans: To prove that f is one

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd