Application of linear equations, Mathematics

Assignment Help:

Application of Linear Equations

We are going to talk about applications to linear equations.  Or, put in other terms, now we will start looking at story problems or word problems. 

Process for Working Story/Word Problems

1.   READ THE PROBLEM.

2.   READ THE PROBLEM AGAIN.  Okay, this might be a little bit of overkill here.

Though, the point of these first two steps is that you have to read the problem. This step is the most important step, however it is also the step that most people don't do correctly.

You need to carefully read the problem and as several times as it takes.  You are only done with this step while you have wholly understood what the problem is asking you to do. It includes identifying all the provided information and identifying what you being asked to determine.

Again, it can't be stressed sufficient that you've to carefully read the problem. Sometimes a single word can totally change how the problem is worked.  If you only skim the problem you may well miss that extremely important word.

3.   Represent one of the unknown quantities along with variable and attempt to associate all the other unknown quantities (if there are any of course) to this variable.

4.   If applicable, sketch a figure reveling the situation. it may seem like a silly step, however it can be incredibly helpful with the next step on occasion.

5.   Make an equation which will relate known quantities to the unknown quantities. In order to does this make use of known formulas and frequently the figure sketched in the previous step can be used to make the equation.

6.   Solve out the equation formed in the previous step and write the answer to all the questions.  It is significant to answer all the questions which you were asked.  Generally you will be asked for many quantities in the answer and the equation will only give one of them.

7.   Check your answer. Do this through plugging into the equation; however also use intuition to ensure that the answer makes sense.  Mistakes can frequently be identified by acknowledging that the answer doesn't just make sense.

Let's begin things off with a couple of fairly fundamental examples to illustrate the procedure.  Note as well that at this point it is supposed that you are able of solving fairly simple linear equations and hence not much detail will be given for the real solution stage. The instance of this section is more on the set up of the equation than the solving of the equation.


Related Discussions:- Application of linear equations

Constructing a dfa/nfa or a regex), Let ∑ = (0, 1). Define the following la...

Let ∑ = (0, 1). Define the following language: L = {x | x contains an equal number of occurrences of 01 and 10} Either prove L is regular (by constructing a DFA/NFA or a rege

Auxiliary methods for information distribution, AUXILIARY METHODS There...

AUXILIARY METHODS There are other reprographic methods which although commonly used earlier, are now mainly used for specific purposes. We think you should be aware of these me

Graph all four vectors on similar axis system, The vector a → =(2,4) compu...

The vector a → =(2,4) compute 3a → , ½ a → and -2a → . Graph all four vectors on similar axis system. Solution: Now here are the three scalar Multiplication 3a → = (6,

Exponential and logarithm equations, Exponential and Logarithm Equations ...

Exponential and Logarithm Equations : In this section we'll learn solving equations along with exponential functions or logarithms in them. We'll begin with equations which invol

Solve 8 cos2 (1 - x ) + 13 cos(1 - x )- 5 = 0 trig function, Solve 8 cos 2 ...

Solve 8 cos 2 (1 - x ) + 13 cos(1 - x )- 5 = 0 . Solution Now, as specified prior to starting the instance this quadratic does not factor.  Though, that doesn't mean all i

Solve by factorization, Solve by factorization X 2 +(a/a+b + a+b/a)x+...

Solve by factorization X 2 +(a/a+b + a+b/a)x+1 = 0 X 2 +(a/a+b + a+b/a)x+1 =>  X 2 +(a/a+b x a+b/ax + a/a+b .a+b/a) =>  X[x+a/a+b] +a+b/a[a+a*a+b]= 0 =>  X= -a

Estimation of difference among population proportions , Estimation of diffe...

Estimation of difference among population proportions Assume the two proportions be described by P1 and P2, respectively,Then the difference absolute between the two proportion

Logs, log4^(x+2)=log4^8

log4^(x+2)=log4^8

Given x+1/x=2cosy then find x^n +1/x^n, Here we know x can only be 1 or -1...

Here we know x can only be 1 or -1. so if it is 1 ans is 2. if x is -1, for n even ans will be 2 if x is -1 and n is odd ans will ne -2. so we can see evenfor negative x also an

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd