Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Antinoise Systems — Noise Cancellation?
Traditionally sound-absorbing materials have been used quite effectively to reduce noise levels in aircraft, amphitheaters, and other locations. An alternate way is to develop an electronic system that cancels the noise. Ear doctors and engineers have successfully developed ear devices that will nearly eliminate the bothersome and irritating noise (so-called tinnitus) experienced by patients suffering from M´ eni` ere's disease. For passengers in airplanes, helicopters, and other flying equipment, a proper headgear is being developed in order to eliminate the annoying noise.
Applications could conceivably extend to people residing near airports and bothered by airplane takeoffs and landings. For industrial workers who are likely to develop long-term ill effects due to various noises they may be subjected to in their workplace, and even for persons who are irritated by the pedestrian noise levels in certain locations, antinoise systems that nearly eliminate or nullify noise become very desirable.
Figure illustrates in block-diagram form the principle of noise cancellation as applied to an aircraft carrying passengers. The electric signal resulting after sampling the noise at the noise sources is passed through a filter whose transfer function is continuously adjusted by a special-purpose computer to match the transfer function of the sound path. An inverted version of the signal is finally applied to loudspeakers, which project the sound waves out of phase with those from the noise sources, nearly canceling the noise. Microphones on the headrests monitor the sound experienced by the airline passengers so that the computer can determine the proper filter adjustments.
Signal processing, which is concerned with manipulating signals to extract information and to use that information to generate other useful electric signals, is indeed an important and farreaching subject.
What is Q-switching in laser ? Give its application. Discuss the elementary idea of mode locking. Generation of high power pulses There are three basic techniques to gene
Suppose that the length of a 10Base-5 cable is 2500 metres. If the speed of propagation in a thick co-axial cable is 60% of the speed of light, how long does it take for a bit to
a) Illustrate the Schematic diagram of the Transformer Box used in the Practical Session b) Calculate the output voltage on an Oscilloscope and determine its amplitude and freq
Q. A solenoid of cylindrical geometry is shown in Figure. (a) If the exciting coil carries a steady direct current I, derive an expression for the force on the plunger. (b) F
Q. The magnetization curve taken at 1000 r/min on a 200-V dc series motor has the following data: Field current, A: 5 10 15 20 25 30 Voltage, A: 80 160 202 222 236 244 Th
Future scope on MATLAB in India
What is Voltage Multiplying DACs? Multiplying DACs function on the principle of producing a weighted sum analog signal where the sum is proportional to the digital input signal
what is the difference between the continuous time system and discrete time system and their advnatages?
Common-emitter configuration: The common-emitter that is abbreviated as CE transistor configuration is displayed in figure. The transistor terminal common to both the input
Q.‘Pentium processor has a superscalar architecture'. Describe the meaning of statement. Ans:Pentium microprocessor is organized with three execution units. One executes float
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd