Animal pharming, Biology

Assignment Help:

Animal pharming

Using animals as bioreactors is also cost-effective and advantageous because animals naturally carry the cellular mechanisms needed to produce complex proteins. Genes require certain cellular mechanisms to help them produce proteins. These mechanisms are present in a living animal, but they may be difficult or impossible to replicate in a cell culture. Animal pharming, the process of using transgenic animals to produce human drugs, is staking its claim in a lucrative world market. Transgenic animals are animals which have been genetically transformed by splicing and inserting foreign animal or human genes into their chromosomes. The inserted gene, when successful, enables an animal to make a certain pharmaceutical protein in its milk, urine, blood, sperm, or eggs, or to grow rejection-resistant organs for transplant. Global demand continues to grow for human proteins and vaccines. These proteins serve numerous therapeutic purposes such as treatments for cystic fibrosis, haemophilia, osteoporosis, arthritis, malaria, and HIV. Transgenic animals can also produce monoclonal antibodies (antibodies specifically targeted towards disease proteins) which are used in vaccine development.

In 1998, less than 1% of the world supply of human therapeutic proteins came from production of recombinant proteins (proteins which are formed by laboratory manipulation of genes in plants, bacteria, or animals). That tiny percentage of overall Table: Pharming products currently in research and development

Animal

Drug/protein

U s e

sheep

alpha1 anti trypsin

deficiency leads to emphysema

sheep

C F T R

treatment of cystic fibrosis

sheep

tissue plasminogen activator

treatment of thrombosis

sheep

factor VIII, IX

treatment of haemophilia

sheep

fibrinogen

treatment of wound healing

pig,

tissue plasminogen activator

treatment of thrombosis

pig

factor VIII, IX

treatment of haemophilia

goat

human protein C

treatment of thrombosis

goat

antithrombin 3

treatment of thrombosis

goat

glutamic acid decarboxylase

treatment of type 1 diabetes

goat

Pro542

treatment of HIV

cow

alpha-lactalbumin

anti-infection

cow

factor VIII

treatment of haemophilia

cow

fibrinogen

wound healing

cow

collagen I, collagen II

tissue repair, treatment of rheumatoid arthritis

cow

lactoferrin

treatment of GI tract infection, treatment of

 

 

infectious arthritis

cow

human serum albumin

maintains blood volume

chicken,

monoclonal antibodies

other vaccine production

cow, goat

 

 

production, however, was valued at almost $12 billion, or 50 %, of  the $24 billion global market for human proteins. A list of important recombinant proteins worked as bio harming in livestock for large scale production is given in Table.

As per a Financial Times article a herd of 600 transgenic cows could supply the worldwide demand of some pharmaceuticals, for example, human serum albumin used in the treatment of burns and traumatic injuries. With greater integration of computers into laboratory functions, molecular biologists have drastically reduced the time needed to identify and isolate genes. As gene sequencing has become increasingly automated, each known sequence is recorded and stored in a data base.

The genes for 2 different human blood clotting factors (VIII and IX) have been hooked up to sheep and pig regulatory sequences that causes expression in mammary tissue; after transformation of sheep or pig embryos, genetically engineered animals have been selected that produce milk with a large percentage of human blood-clotting factor. This protein can be isolated from the milk, purified, and marketed. Similarly, transgenic rabbits have been created that produce human interleukin-2, which is a protein stimulating the proliferation of T-lymphocytes; the latter play an important role in fighting selected cancers. Other human proteins that have been expressed in transgenic animals include: anti-thrombin III (to treat intravascular coagulation), collagen (to treat burns and bone fractures), fibrinogen (used for burns and after surgery), human fertility hormones, human hemoglobin, human serum albumin (for surgery, trauma, and burns), lactoferrin (found in mother milk), tissue plasminogen activator, and particular monoclonal antibodies (including one that is effective against a particular colon cancer). Animals mostly used for this work are pigs, cows, sheep, and goats. The amounts of milk needed to provide a national supply of these pharmaceuticals are really very reasonable. Assuming the animals produce 1 g of the protein per liter milk and one has a purification efficiency of 30% (that is, 30% of the protein is recovered in the pure sample), then a pig can produce 75 g of protein per year, a goat 100 g, a sheep 125 g, and a cow 3 kg. As the national need of blood- clotting factor IX is 2 kg / year, 1 cow/country can do the job. For other proteins the demand is larger (for example, for tissue plasminogen activator it is 75 kg/year and for human serum albumin it is about 1,000 kg/year), but nonetheless a limited number of animals is all one now needs to meet the national demand for pharmaceutical proteins that used to be astronomically expensive.


Related Discussions:- Animal pharming

#title, WHAT IS THE FUNCTION OF CELL COAT

WHAT IS THE FUNCTION OF CELL COAT

Where are the adrenal glands located, Q. Where are the adrenal glands locat...

Q. Where are the adrenal glands located? How many are they and what are their portions? Each adrenal gland is located on the top of each kidney (forming a hat-like structure fo

What are some common laboratory techniques, What are some common laboratory...

What are some common laboratory techniques? During the course of these laboratory sessions, you will be usual to become proficient in the performance of the following laborator

Uses of plural embryos, Uses of Plural Embryos Although the basic tha...

Uses of Plural Embryos Although the basic that trigger causes polyembryony are not fully understood, there has been no dearth of interest in exploiting supernumerary embryos.

Define interactions between volatile substances and proteins, Define Intera...

Define Interactions between Volatile Substances and Proteins? Flavour binding may involve adsorption at the surface of food or penetration to the food interiority by diffusion

Explain community dietitians, Explain Community dietitians Community d...

Explain Community dietitians Community dietitians or  nutritionists  may  counsel  individuals and  groups on  sound nutrition practices  to  prevent  disease, maintain  healt

Determine the appearance of a plant cell, Determine the appearance of a pla...

Determine the appearance of a plant cell when water is plentiful? When water is plentiful, the central vacuole expands. The other organelles are pushed against the plasma me

Determine the estimation of minerals in foods, Estimation of minerals in fo...

Estimation of minerals in foods The minerals in foods are determined by ashing or incineration at temperatures in the region of 500°C following standard procedure. This destroy

Biochemistry starch and dextrin test, Why there is difference in the colour...

Why there is difference in the colour obtained for the dextrin solution (ammonium sulphate and dextrin )when brought to iodine test Respetively by first half saturation test and t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd