Analysis of semiconductor devices, Electrical Engineering

Assignment Help:

Analysis of Semiconductor Devices

There are two complementary techniques of studying semiconductor devices:

  1. Via numerical simulation of the semiconductor equations.
  2. Via analytical solution of semiconductor equations.
  • There are a various range of techniques used for device simulation with some of them beginning from the drift diffusion formalism outlined earlier, where as others take a more fundamental approach beginning from the Boltzmann transport equation instead.
  • Generally, the numerical approach provides highly accurate results but needs heavy computational effort as well.
  • The output of device simulation in the type of numerical values for all internal variables needs comparatively larger effort to understand and extract significant relationships among the device characteristics.

 

The electrons in the valence band are not able of acquiring energy from external electric field and therefore do not contribute to the current. This band is not at all empty but may be partially or totally with electrons. On the contrary in the conduction band, electrons are seldom present. But it is probable for electrons to acquire energy from external field and thus the electrons in these bands contribute to the electric current. The forbidden energy gap is devoid of any of the electrons and this much energy is needed by electrons to jump from valence band to the conduction band.

Other words, in the case of conductors and semiconductors, like the temperature increases, the valence electrons in the valence energy move from the valence band to conductance band. Like the electron (negatively charged) jumps from valence band to conductance band, in the valence band there is a left out deficiency of electron that is called Hole (positively charged). Depending upon the value of Egap that is energy gap solids can be categorized as metals (conductors), insulators and semi conductors.


Related Discussions:- Analysis of semiconductor devices

Illustrate power semiconductor devices, Q. Illustrate Power Semiconductor D...

Q. Illustrate Power Semiconductor Devices? Since the advent of the first thyristor or silicon-controlled rectifier (SCR) in 1957, tremendous advances have been made in power se

Solve for the time-domain forced response of the resultant, Consider an RLC...

Consider an RLC series circuit excited by v(t) = V m cos ωt in the time domain. By using superposition, solve for the time-domain forced response of the resultant current through

Induced voltage and inductance, Experiments conducted by Faraday and others...

Experiments conducted by Faraday and others using current carrying coils resulted in 'The Laws of Electromagnetic Induction' which state: 1)  'If the magnetic flux threading throu

Determine transformer turns ratio, A flyback converter is to be designed so...

A flyback converter is to be designed so that it operates in continuous "current" (flux) mode with a duty cycle of D = 0.45 when input voltage V s = 48 V, output voltage V o = 30

Illustrate transformer coupling, Q. Illustrate Transformer coupling? In...

Q. Illustrate Transformer coupling? In this method the primary winding of the transformer acts as a collector load and the secondary winding transfers the a.c. output signal di

Show process of power transmission and distribution, Q. Show Process of Pow...

Q. Show Process of Power transmission and distribution? The structure of a power system can be divided into generation (G), transmission, (T), and distribution (D) facilities,

Ac netwoks, hello look for someone that could do i lab report form me on ac...

hello look for someone that could do i lab report form me on ac network, the report is due tonight at 12:00 so only have 8 hours left wondering if anyone is interested in do it? ca

Registers - introduction to microprocessors , Registers A resister is ...

Registers A resister is  a group  of flip  flops  or binary  cells which holds  the binary information. Since  a binary cell  stores  one  bit of  information  an n bit  regis

Find magnitude and direction developed torque, Q. The self and mutual induc...

Q. The self and mutual inductances of a machine with two windings are given by L 11 = (1 +sin θ), L 22 = 2(1 + sin θ), and L 12 = L 21 = M = (1-sin θ). Assuming θ = 45°, and le

Machine, function of a commutator in a DC motor

function of a commutator in a DC motor

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd