Analysis of algorithm running time - undirected graph, Mathematics

Assignment Help:

Problem. You are given an undirected graph G = (V,E) in which the edge weights are highly restricted.

In particular, each edge has a positive integer weight of either {1, 2, . . . ,W}, where W is a constant (independent of the number of edges or vertices). Show that it is possible to compute the single- source shortest paths in such a graph in O(n + m) time, where n = |V | and m = |E|. (Hint: Because W is a constant, a running time of O(W(n + m)) is as good as O(n + m).)

 Requirement: algorithm running time needs to be in DIJKstra's running time or better.


Related Discussions:- Analysis of algorithm running time - undirected graph

Fractions, #question.mario has 3 nickelsin his pocket.wha fraction ofadolla...

#question.mario has 3 nickelsin his pocket.wha fraction ofadolla do 3 nickels represent

How many more miles did he run today, Kevin ran 6.8 miles yesterday and 10....

Kevin ran 6.8 miles yesterday and 10.4 miles presently. How many more miles did he run today? To ?nd out how many more miles he ran today, subtract yesterday's miles from today

Derivatives, Derivatives The rate of change in the value of a...

Derivatives The rate of change in the value of a function is useful to study the behavior of a function. This change in y for a unit change in x is

Vectors - calculus, Vectors  This is a quite short section. We will b...

Vectors  This is a quite short section. We will be taking a concise look at vectors and a few of their properties. We will require some of this material in the other section a

Quadric surfaces, identify 4 sketch the quadric surfaces

identify 4 sketch the quadric surfaces

Linear programming , Use the simplex method to solve the following LP Probl...

Use the simplex method to solve the following LP Problem. Max Z = 107x1+x2+2x3 Subject to 14x1+x2-6x3+3x4=7 16x1+x2-6x3 3x1-x2-x3 x1,x2,x3,x4 >=0

Binormal vector - three dimensional space, Binormal Vector - Three Dimensio...

Binormal Vector - Three Dimensional Space Next, is the binormal vector.  The binormal vector is illustrated to be, B → (t) = T → (t) * N → (t) Since the binormal vecto

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd