Analyse the beam, Mechanical Engineering

Assignment Help:

Analyse the beam:

Analyse the beam illustrated in Figure and draw the SFD, BND & thrust diagram. Situated the point of contraflexure, if any.

1146_Analyse the beam.png

Figure

Solution

Vertical component of 4 kN at C, = 4 × cos 60o = 2 kN ( ↓ )

Horizontal component of 4 kN at C, = 4 × sin 60o = 3.464 kN ( ← )

Vertical component of 2 kN at D, = 2 × cos 30o = 1.732 kN ( ↓ )

Horizontal component of 2 kN at D, = 2 × sin 30o = 1 kN ( → )

Taking moment around A,

R B   × 8 - (3 × 10) - 2 × 4 × (4 + (4/2)) - (1.732 × 3) - (2 × 1) = 0

RB  = 10.6495 kN

RA  = 2 + 1.732 + (2 × 4) + 3 - RB  = 14.732 - 10.6495 = 4.0825 kN

Shear Force (beginning from the Left End A)

SF at A, FA  = + 4.0825 kN

SF just left of C, FC  = + 4.0825 kN

SF just right of C, FC  = + 4.0825 - 2 = + 2.0825 kN

SF just left of D, FD  = + 2.0825 kN

SF just right of D,  FD  = + 2.0825 - 1.732 = + 0.3505 kN

SF at E, FE  = + 0.3505 kN

SF just left of B, FB  = + 0.3505 - (2 × 4) = - 7.6495 kN

SF just right of B, FB  = - 7.6495 + 10.6495 = + 3 kN

SF just left of F, FF  = + 3 kN = load at the end F.

Bending Moment (beginning from the F)

BM at F,          MF   = 0

BM at B,  M B  = - (3 × 2) = - 6 kN-m

BM at E, M E  =+ (10.46 95 × 4) - (3 × 6) - ( 2 × 4 ×( 4/2))   =+ 8.599 kN-m

BM at D, BM at C,

M D  = + (4.0825 × 3) - (2 × 2) = + 8.2475 kN-m

M C  = + (4.0825 × 1) = + 4.0825 kN-m

 BM at A,        MA = 0

Maximum Bending Moment

Maximum bending moment shall occur at B and among B and E. Consider a section XX at a distance x from the end F.

Fx  = - 10.6495 + 3 + 2 ( x - 2)

For maximum bending moment, Fx must be equal to zero.

- 10.6495 + 3 + 2x - 4 = 0

x = 5.82475 m ≈ 5.825 m

BM at section XX,

∴          M x = + 10.6495 ( x - 2) - 3x - 2 ( x - 2) × (( x - 2)/2)

                   = 10.6495 ( x - 2) - 3x - ( x - 2)2

M max  = 10.6495 (5.825 - 2) - 3 (5.825) - (5.825 - 2)2

=+ 8.629 kN-m

Maximum positive bending moment = + 8.629 kN-m

Maximum negative bending moment = - 6 kN-m.

Point of Contraflexure

Equating the BM at section XX, to zero.

10.6495 ( x - 2) - 3x - ( x - 2)2  = 0

or         10.6495 x - 21.299 - 3x - x2  + 4 x - 4 = 0

or         x2  + 11.6495x - 25.299 = 0

or         x2  - 11.6495x + 25.299 = 0

Solving out by trial and error, we obtain x = 2.9 m.

Point of contraflexure is at a distance of 2.9 m from the end F.

Thrust Diagram

Horizontal reaction at A,

+ H A  + 3.464 - 1 = 0

+ H A  + 2.464 = 0

∴ H A  =- 2.464 kN

 ('-' denote that the reaction is towards right)

The portion AC is subjected to a compressive force of 2.464 kN. The part CD is subjected to a tensile force of 1 kN (that means3.464 - 2.464 = 1).


Related Discussions:- Analyse the beam

Scissors crossing, Scissors Crossing: A scissors crossing consists of...

Scissors Crossing: A scissors crossing consists of two crossovers overlapping each other. It is shown in Figure. Figure: Scissors Crossover Triangles

Confined space standard, Confined Space Standard Various examples of ...

Confined Space Standard Various examples of workplace exist in industrial practice where spaces are characterized by several restrictions. Such spaces are identified as: manh

Process capability, Process capability Process capability which is a m...

Process capability Process capability which is a measurement with respect to the inherent precision of a manufacturing process has two significant elements, i.e. process facto

#clutches, #constructional features and working of Multiplate Dry Clutch

#constructional features and working of Multiplate Dry Clutch

Illustrate all the laws of mechanics, (a) Illustrate all the laws of mechan...

(a) Illustrate all the laws of mechanics? (b) What ate the two limits of limitation on Newtonian mechanic?

Thermodynamics, when does water convert in to ice at vaccum pressure

when does water convert in to ice at vaccum pressure

Truss arrangement assuming the members are beams, Q2.1  Using the stiffness...

Q2.1  Using the stiffness method calculate axial forces and the deflections of the joints of the truss shown in the FIG. The truss was built using 50 mm x 50 mm x 5 mm SHS with  E

Pure torsion, Pure Torsion: What do you mean by pure Torsion?       ...

Pure Torsion: What do you mean by pure Torsion?                                                                                                       In general two typ

Explain the back rake angle, Explain the Back Rake Angle It measured th...

Explain the Back Rake Angle It measured the downwards slope of the top surface of the tool from the nose to the rear along the longitudinal axis. Its purpose is to guide the di

Determine the temperature for the engines, (a) Describe heat engine. How is...

(a) Describe heat engine. How is this engine characterized? (b) Describe Perpetual motion machines of first kind and second kind, i.e. PMM1 and PMM2. Are such machines possible

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd