Analyse the beam, Mechanical Engineering

Assignment Help:

Analyse the beam:

Analyse the beam illustrated in Figure and draw the SFD, BND & thrust diagram. Situated the point of contraflexure, if any.

1146_Analyse the beam.png

Figure

Solution

Vertical component of 4 kN at C, = 4 × cos 60o = 2 kN ( ↓ )

Horizontal component of 4 kN at C, = 4 × sin 60o = 3.464 kN ( ← )

Vertical component of 2 kN at D, = 2 × cos 30o = 1.732 kN ( ↓ )

Horizontal component of 2 kN at D, = 2 × sin 30o = 1 kN ( → )

Taking moment around A,

R B   × 8 - (3 × 10) - 2 × 4 × (4 + (4/2)) - (1.732 × 3) - (2 × 1) = 0

RB  = 10.6495 kN

RA  = 2 + 1.732 + (2 × 4) + 3 - RB  = 14.732 - 10.6495 = 4.0825 kN

Shear Force (beginning from the Left End A)

SF at A, FA  = + 4.0825 kN

SF just left of C, FC  = + 4.0825 kN

SF just right of C, FC  = + 4.0825 - 2 = + 2.0825 kN

SF just left of D, FD  = + 2.0825 kN

SF just right of D,  FD  = + 2.0825 - 1.732 = + 0.3505 kN

SF at E, FE  = + 0.3505 kN

SF just left of B, FB  = + 0.3505 - (2 × 4) = - 7.6495 kN

SF just right of B, FB  = - 7.6495 + 10.6495 = + 3 kN

SF just left of F, FF  = + 3 kN = load at the end F.

Bending Moment (beginning from the F)

BM at F,          MF   = 0

BM at B,  M B  = - (3 × 2) = - 6 kN-m

BM at E, M E  =+ (10.46 95 × 4) - (3 × 6) - ( 2 × 4 ×( 4/2))   =+ 8.599 kN-m

BM at D, BM at C,

M D  = + (4.0825 × 3) - (2 × 2) = + 8.2475 kN-m

M C  = + (4.0825 × 1) = + 4.0825 kN-m

 BM at A,        MA = 0

Maximum Bending Moment

Maximum bending moment shall occur at B and among B and E. Consider a section XX at a distance x from the end F.

Fx  = - 10.6495 + 3 + 2 ( x - 2)

For maximum bending moment, Fx must be equal to zero.

- 10.6495 + 3 + 2x - 4 = 0

x = 5.82475 m ≈ 5.825 m

BM at section XX,

∴          M x = + 10.6495 ( x - 2) - 3x - 2 ( x - 2) × (( x - 2)/2)

                   = 10.6495 ( x - 2) - 3x - ( x - 2)2

M max  = 10.6495 (5.825 - 2) - 3 (5.825) - (5.825 - 2)2

=+ 8.629 kN-m

Maximum positive bending moment = + 8.629 kN-m

Maximum negative bending moment = - 6 kN-m.

Point of Contraflexure

Equating the BM at section XX, to zero.

10.6495 ( x - 2) - 3x - ( x - 2)2  = 0

or         10.6495 x - 21.299 - 3x - x2  + 4 x - 4 = 0

or         x2  + 11.6495x - 25.299 = 0

or         x2  - 11.6495x + 25.299 = 0

Solving out by trial and error, we obtain x = 2.9 m.

Point of contraflexure is at a distance of 2.9 m from the end F.

Thrust Diagram

Horizontal reaction at A,

+ H A  + 3.464 - 1 = 0

+ H A  + 2.464 = 0

∴ H A  =- 2.464 kN

 ('-' denote that the reaction is towards right)

The portion AC is subjected to a compressive force of 2.464 kN. The part CD is subjected to a tensile force of 1 kN (that means3.464 - 2.464 = 1).


Related Discussions:- Analyse the beam

Find out the axial moment of inertia, Find out the axial moment of inertia:...

Find out the axial moment of inertia: Find out the axial moment of inertia of a rectangular area of base b and height d around centroidal axis GX and the base B 1 B 2 . So

Electro slag welding, ELECTRO SLAG WELDING   This process is similar...

ELECTRO SLAG WELDING   This process is similar to the electro gas welding process designed for making butt welding in the vertical position in one single pass and the plate

Velocity acquired by block - system released from rest, Velocity acquired b...

Velocity acquired by block - system released from rest: T wo blocks shown in the figure given below, have masses A = 20N and B = 10N and the coefficient of friction between

What are interconnecting pipe racks, Q. What are Interconnecting pipe racks...

Q. What are Interconnecting pipe racks? Interconnecting pipe racks carry the main process inlet, export and transfer lines and utility distribution lines to and from process an

Opresion reserch, ppt of appling queuing model in railwy reservation

ppt of appling queuing model in railwy reservation

Radius of gyration, Radiu s of Gyration (K) The radius of gyration of ...

Radiu s of Gyration (K) The radius of gyration of given lamina about given axis is that distance from te given axis at which all the elemental parts of lamina would have to be

What is a clay-characteristics , 1.  What is a soil in an engineering conte...

1.  What is a soil in an engineering context? Define. 2.  (a)  What is a clay? (b) What are the major properties and characteristics of clay? Discuss. (c)  Define the term

#title.THERMODYNAMICS., what are the limitations of first law of thermodyna...

what are the limitations of first law of thermodynamics?

Compare otto cycle with diesel cycle, Compare otto cycle with Diesel cycle:...

Compare otto cycle with Diesel cycle: Sol.: These two cycles can be compared on the basis of either the same compression ratio or the same maximum pressure and temperature.

Type of strain, Type of strain: There are basically four type of strai...

Type of strain: There are basically four type of strain 1. Tensile strain 2. Compressive strain 3. Volumetric strain 4. Shear strain

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd