Amperes circuital law, Electrical Engineering

Assignment Help:

Amperes Circuital Law

The    observation    that    magnetic    field strength varied with distance from the wire led to the following statement:

'If  the  magnetic  field  H  is  integrated along a closed path, the result is equal to the current enclosed'.

This is the basis with which we can relate the strength of a magnetic field to the current producing it. It is an extremely important statement. Note that only the component of H that lies along the path is to be considered, so the Law may be stated mathematically as:


∫ H     dl     ∑ I


where the  vector  dot  product  is used  (= H.dl.cos  ).  Note that  both H  and  dl are vectors.  The  direction  of  H  around  a current carrying conductor is given by the 'right hand corkscrew rule' , attributed to Maxwell.Ampere's  Circuital  Law  applies  for  any path chosen for the integration. If the chosen path does not enclose any current, the result of the integration will be zero.

To apply this law to the case of a long, thin current carrying conductor, it is convenient to choose a circular path of constant radius centred on the wire. Since any path could be chosen, the circular path is chosen simply to make the integration easy, H being  both constant  and  tangential  for  a given radius from the wire.

Hence

∫ H     dl     ∑ I

H.2  r = I
 
H  = I/2  r


For I1  = I2  =1 amp and r = 1 metre, the force/metre   in  a   vacuum  =   2   x  10-7
Newtons   by  definition  of  the  ampere. Hence    =    0 = 4   x 10-7

Had Ampere been able to conduct his experiments involving the force between current carrying conductors in materials other than air, he would have found that the material involved also affected the force. This can be taken into account by introducing a property called the 'relative magnetic permeability' of a material and is given the symbol   r.

 

Different materials have different values of . These are related to that for a vacuum (or   for practical  purposes, air)  by introducing  the   concept  of         relative permeability  r  which expresses  for the material relative to that for a vacuum, i.e.

=   0   r.

 

Finally, the quantity .H is defined as the flux density B (i.e. the number of flux lines/m2) so the flux density B is:

B  =    0   rH

so    the    force    on    a    current    carrying conductor in a magnetic field H  may be expressed in terms of the resulting flux density to be:

 

force/metre = B. I2

or

force = B.I.L

 

1.    when  we  draw  flux  lines  on  a diagram, the density of those lines (number/m2)  depicts  the  product 0   rH rather than just H.

2.  flux lines are always continuous.They do not start or stop in space -.i.e. they are always loops, even though they may not always be shown as such in some diagrams

 

 

 


Related Discussions:- Amperes circuital law

Line diagrams of a network-large company, i need a line diagram sample of a...

i need a line diagram sample of a large network, i need to practice how to draw and design such network

Describe the design procedure of oai 321 cell at transistor, Obtain express...

Obtain expressions for the drain source current in an n-channel MOS transistor in terms of terminal voltages and transistor parameters. Indicate reasons why, for deep sub micron t

Hamming window and zero padding, This question investigates the effect of e...

This question investigates the effect of extending the data set with zero-padding & of the appropriate time in the workflow to apply a window function. To get finer resolution in t

Determine the service and backwash rates, Determine the Service and Backwas...

Determine the Service and Backwash Rates The system on site is a pressure sand filter, with a service curve. The filter is backwashed using the feed pump, at a higher flow rat

Define hysteresis, Define Hysteresis Hysteresis is the 'lagging' effect...

Define Hysteresis Hysteresis is the 'lagging' effect of flux density B whenever there are changes in the magnetic field strength H. When an initially unmagnetized ferromagnetic

Draw the schematic diagram of the arrangement, Q. A two-winding, single-pha...

Q. A two-winding, single-phase transformer rated 3 kVA, 220:110 V, 60 Hz is connected as an autotransformer to transform a line input voltage of 330 V to a line output voltage of 1

#need digital related, Is there any electronics related papers like digital...

Is there any electronics related papers like digital for free download

Indirect addressing , Indirect Addressing In this  addressing  mo e al...

Indirect Addressing In this  addressing  mo e also ne  of the  operands is the  stored in the memory. The memory  address of the  operand  is specified  by the  register pair.

Calculate load current and terminal voltage of each machine, Q. The externa...

Q. The external - characteristics data of two shunt generators in parallel are given as follows: Load Current, A: 0 5 10 15 20 25 30 Terminal voltage I, V: 270 263 254 240 22

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd