All pairs shortest paths algorithm, Data Structure & Algorithms

Assignment Help:

In the last section, we discussed regarding shortest path algorithm that starts with a single source and determines shortest path to all vertices in the graph. In this section, we will discuss the problem of finding shortest path among all pairs of vertices in a graph. This problem is helpful in finding distance among all pairs of cities in a road atlas. All pairs shortest paths problem is mother of all of the shortest paths problems.

In this algorithm, we shall represent the graph through adjacency matrix.

The weight of an edge Cij in an adjacency matrix representation of any directed graph is represented as follows

1625_All Pairs Shortest Paths Algorithm.png

Given directed graph G = (V, E), where each edge (v, w) contain a non-negative cost C(v , w), for all of the pairs of vertices (v, w) to determine the lowest cost path from v to w.

The All pairs shortest paths problem can be considered as a generalisation of single- source-shortest-path problem, using Dijkstra's algorithm by varying the source node amongst all the nodes in the graph. If negative edge(s) is allowed, then we can't employ Dijkstra's algorithm.

In this segment we will employ a recursive solution to all pair shortest paths problem known as Floyd-Warshall algorithm, which runs in O(n3) time.

This algorithm is depends on the following principle. For graph G let V = {1, 2,3,...,n}.Let us assume a sub set of the vertices {1, 2, 3, .....,k. For any pair of vertices which belong to V, assume all paths from i to j whose intermediate vertices are from {1, 2, 3, ....k}. This algorithm will exploit the relationship among path p and shortest path from i to j whose intermediate vertices are from {1, 2, 3, ....k-1} with the given two possibilities:

1.   If k is not any intermediate vertex in the path p, then all of the intermediate vertices of the path p are in {1, 2, 3, ....,k-1}. Therefore, shortest path from i to j along intermediate vertices in {1, 2, 3, ....,k-1} is also the shortest path from i to j along vertices in {1, 2, 3, ..., k}.

2.   If k is intermediate vertex of the path p, we break down the path p in path p1 from vertex i to k and path p2 from vertex k to j. So, path p1 is the shortest path from i to k  along with intermediate vertices in {1, 2, 3, ...,k-1}.

Throughout iteration process we determine the shortest path from i to j using only vertices (1, 2,3, ..., k-1} and in the next step, we determine the cost of using the kth vertex as an intermediate step. If this results into lower cost, then we store it.

After n iterations (all possible iterations), we determine the lowest cost path from i to j by using all vertices (if essential).

Notice the following:

Initialize the matrix

 C[i][ j] = ∞ if (i, j) does not associate with E for graph G = (V, E)

 Initially, D[i][j] = C[i][j]

We also term a path matrix P where P[i][j] holds intermediate vertex k on the least cost path from i to j which leads to the shortest path from i to j .


Related Discussions:- All pairs shortest paths algorithm

Define big theta notation, Define Big Theta notation Big Theta notati...

Define Big Theta notation Big Theta notation (θ) : The upper and lower bound for the function 'f' is given by the big oh notation (θ). Considering 'g' to be a function from t

Write the algorithm to find input and output value, This algorithm inputs 5...

This algorithm inputs 5 values and outputs how many input numbers were positive and how many were negative. Data to be used: N = 1, -5, 2, -8, -7

The search trees are abstract data types, the above title please send give ...

the above title please send give for the pdf file and word file

Terminology used for files structures, Given are the definitions of some im...

Given are the definitions of some important terms: 1) Field: This is an elementary data item characterized by its size, length and type. For instance, Name

Explain the theory of computational complexity, Explain the theory of compu...

Explain the theory of computational complexity A  problem's  intractability  remains  the  similar  for  all  principal  models  of   computations    and   all reasonable inpu

The complexity of searching an element, The complexity of searching an elem...

The complexity of searching an element from a set of n elements using Binary search algorithm is   O(log n)

Non-recursive algorithm, Q .  Write down the non-recursive algorithm to tra...

Q .  Write down the non-recursive algorithm to traverse a tree in preorder. Ans: T he Non- Recursive algorithm for preorder traversal is written below: Initially i

Linear array, representation of linear array

representation of linear array

Number of operations possible on ordered lists and arrays, Q. Enumerate num...

Q. Enumerate number of operations possible on ordered lists and arrays.  Write procedures to insert and delete an element in to array.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd