Algorithm to delete the specific node from binary searchtree, Data Structure & Algorithms

Assignment Help:

Q. Write down an algorithm to delete the specific node from binary search tree. Trace the algorithm to delete a node (10) from the following given tree.

1882_binary tree.png

Ans.

Algorithm for Delete ting the specific Node From the Binary Search Tree

To delete the specific node following possibilities may arise

1)      Node id a terminal node

2)      Node have only one child

3)      Node having 2 children.

DEL(INFO, LEFT, RIGT, ROOT, AVAIL, ITEM)

A binary search tree T is in the memory, and an ITEM of information is given as follows.
 This algorithm deletes the specific ITEM from the tree.

1. [to Find the locations of ITEM and its parent] Call FIND(INFO, RIGHT, ROOT, ITEM, LOC, PAR).

2. [ITEM in tree?]

if LOC=NULL, then write : ITEM not in tree, and Exit.

3. [Delete node containing ITEM.]

if RIGHT[LOC] != NULL and LEFT[LOC] !=NULL then:

Call CASEB(INFO,LEFT,RIGHT,ROOT,LOC,PAR). Else:

Call CASEA (INFO,LEFT,RIGHT,ROOT,LOC,PAR).

[End of if structure.]

4. [Return deleted node to AVAIL list.] Set LEFT[LOC]:=AVAIL and AVAIL:=LOC.

5. Exit.

CASEB(INFO,LEFT,RIGHT,ROOT,LOC,PAR)

This procedure will delete the node N at LOC location, where N has two children. The pointer PAR gives us the location of the parent of N, or else PAR=NULL indicates that N is a root node. The pointer SUC gives us the location of the inorder successor of N, and PARSUC gives us the location of the parent of the inorder successor.

1. [Find SUC and PARSUC.]

(a) Set PTR: = RIGHT[LOC] and SAVE:=LOC. (b) Repeat while LEFT[PTR] ≠  NULL:

Set SAVE:=PTR and PTR:=LEFT[PTR]. [End of loop.]

(c) Set SUC : = PTR and PARSUC:=SAVE.

2. [Delete inorder successor]

Call CASEA (INFO, LEFT, RIGHT, ROOT, SUC, PARSUC).

3. [Replace node N by its inorder successor.] (a) If PAR≠NULL, then:

If LOC = LEFT[PAR], then: Set LEFT[PAR]:=SUC.

Else:

Set RIGHT[PAR]: = SUC. [End of If structure.]

Else:

Set ROOT: = SUC. [End of If structure.]

(b) Set LEFT[SUC]:= LEFT [LOC] and

RIGHT[SUC]:=RIGHT[LOC]

4. Return.

CASEA(INFO, LEFT, RIGHT, ROOT, LOC, PAR)

This procedure deletes the node N at LOC location, where N does not contain two children. The pointer PAR gives us the location of the parent of N, or else PAR=NULL indicates that N is a root node. The pointer CHILD gives us the location of the only child of the N, or else CHILD = NULL indicates N has no children.

1. [Initializes CHILD.]

If LEFT[LOC] = NULL and RIGHT[LOC] = NULL, then: Set CHILD:=NULL.

Else if LEFT[LOC]≠NULL, then:

Set CHILD: = LEFT[LOC].

Else

Set CHILD:=RIGHT[LOC] [End of If structue.]

2. If PAR ≠  NULL, then:

If LOC = LEFT [PAR], then:

Set LEFT[PAR]:=CHILD.

Else:

Set RIGHT[PAR]:CHILD = CHILD [End of If structure.]

Else:

Set ROOT : = CHILD.

[End of If structure.]

3. Return.

Inorder traversal of the tree is

4 6 10 11 12 14 15 20

To delete 10

PAR = Parent of 10 ie 15

SUC = inorder succ of 10 ie. 11

PARSUC = Parent of inorder succ ie 12

PTR = RIGHT [LOC]

Address of 12    SAVE: = address of 10

SAVE: = address of 12

PTR = address of 11

SUC = ADDRESS OF 11

PAR SUCC:= ADDRESS OF 12

CHILD = NULL

LEFT [PARSUC] = CHILD= NULL LEFT [PAR]= ADDRESS OF 11

LEFT [SUC] = LEFT [LOC] = ADDRESS OF 6

RIGHT [SUC] = RIGHT[LOC] = ADDRESS OF 12


Related Discussions:- Algorithm to delete the specific node from binary searchtree

Pseudocode algorithm to print the numbers from 1 to 10, 1. Write a pseudoco...

1. Write a pseudocode algorithm to print the numbers from 1 to 10, and then from 10 to 1, using exactly one loop. 2. The function contains() takes a food as an argument and tell

Sparse matrix, Q. Define a sparse matrix. Explain different types of sparse...

Q. Define a sparse matrix. Explain different types of sparse matrices? Show how a triangular array is stored in memory. Evaluate the method to calculate address of any element ajk

Perform inorder, QUESTION (a) Construct a binary tree for the following...

QUESTION (a) Construct a binary tree for the following numbers assuming that a number greater than the node (starting from the root) goes to the left else it goes to the right.

Find the optimal solution - branch and bound algorithm, Consider the follow...

Consider the following 5-city traveling salesman problem. The distance between each city (in miles) is shown in the following table: (a) Formulate an IP whose solution will

FOLDING METHOD, 12345 SOLVE BY USING FOLDING METHOD

12345 SOLVE BY USING FOLDING METHOD

Demonstration of polynomial using linked list, Demonstration of Polynomial ...

Demonstration of Polynomial using Linked List # include # include Struct link { Char sign; intcoef; int expo; struct link *next; }; Typedefstruct link

Determine about the unreachable code assertion, Determine about the unreach...

Determine about the unreachable code assertion An unreachable code assertion is an assertion that is placed at a point in a program that shouldn't be executed under any circum

Bubble sort, Q. The reason bubble sort algorithm is inefficient is that it ...

Q. The reason bubble sort algorithm is inefficient is that it continues execution even after an array is sorted by performing unnecessary comparisons. Therefore, the number of comp

Make adjacency matrix for un-directed graph, Q. Describe the adjacency matr...

Q. Describe the adjacency matrix and make the same for the given undirected graph.    Ans: The representation of Adjacency Matrix: This representation consists of

Write a function that performs integer division, Write a function that perf...

Write a function that performs integer division. The function should take the large number in memory location 1 and divide it by the large number in memory location 2 disregarding

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd