Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

Explain internal and external nodes, Explain Internal and External Nodes ...

Explain Internal and External Nodes  To  draw  the  tree's  extension  by  changing  the  empty  subtrees  by  special nodes. The  extra  nodes shown by little squares are know

Preorder - postorder and inorder, 1) preorder, postorder and inorder 2) ...

1) preorder, postorder and inorder 2) The main feature of a Binary Search Tree is that all of the elements whose values is less than the root reside into the nodes of left subtr

Signals, How does cpu''s part tming and controls generate and controls sign...

How does cpu''s part tming and controls generate and controls signls in computer?

The smallest element of an array''s index, The smallest element of an array...

The smallest element of an array's index is called its Lower bound.

Graph traversal schemes, Various graph traversal schemes Graph Traversa...

Various graph traversal schemes Graph Traversal Scheme. In many problems we wish to investigate all the vertices in a graph in some systematic order. In graph we often do no

Give example of assertion and abstract data type, Give example of assertion...

Give example of assertion and abstract data type For illustration, consider Natural ADT whose carrier set is the set of non-negative integers and whose operations are the usual

Creation of doubly linked list, Program: Creation of Doubly Linked List ...

Program: Creation of Doubly Linked List OUTPUT Input the values of the element -1111 to come out : 1 Input the values of the element -1111 to come out : 2 Inpu

Stack, how we will make projects on stack in c?

how we will make projects on stack in c?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd