Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

Implementation of queue by using a single linked list, Q. Perform implement...

Q. Perform implementation of a queue using a singly linked list L. The operations INSER and DELETE should take O (1) time.

Insertion of a node into a binary search tree, A binary search tree is cons...

A binary search tree is constructed through the repeated insertion of new nodes in a binary tree structure. Insertion has to maintain the order of the tree. The value to the lef

Circular linklist, write an algorithm to insert an element at the beginning...

write an algorithm to insert an element at the beginning of a circular linked list?

Arrays, This unit discussed about data structure called Arrays. The easiest...

This unit discussed about data structure called Arrays. The easiest form of array is a one-dimensional array which may be described as a finite ordered set of homogeneous elements

Data structures, I am looking for assignment help on the topic Data Structu...

I am looking for assignment help on the topic Data Structures. It would be great if anyone help me.

Four applications or implementation of the stack, Q. Write down any four ap...

Q. Write down any four applications or implementation of the stack.                                     Ans. (i)       The Conversion of infix to postfix form (ii)

Computer arhitecture, The controversy of RISC versus CISC never ends. Suppo...

The controversy of RISC versus CISC never ends. Suppose that you represent an advocate for the RISC approach; write at least a one-page critic of the CISC approach showing its disa

High-level and bubble algorithm , 1. Give both a high-level algorithm and a...

1. Give both a high-level algorithm and an implementation (\bubble diagram") of a Turing machine for the language in Exercise 3.8 (b) on page 160. Use the ' notation to show the co

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd