Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

Explain the halting problem, Explain the halting problem Given a comput...

Explain the halting problem Given a computer program and an input to it, verify whether the program will halt on that input or continue working indefinitely on it.

Infix expression has balanced parenthesis or not, Q. By making use of stack...

Q. By making use of stacks, write an algorithm to determine whether the infix expression has balanced parenthesis or not.

Time converstion, how to convert 12 hour format into 24 hour format using c...

how to convert 12 hour format into 24 hour format using c program

COBOL, write a COBOL program to find the biggest of two numbers

write a COBOL program to find the biggest of two numbers

Representation of arrays, REPRESENTATION OF ARRAYS This is not uncommon...

REPRESENTATION OF ARRAYS This is not uncommon to determine a large number of programs which procedure the elements of an array in sequence. However, does it mean that the eleme

Luminous Jewels - The Polishing Game, Byteland county is very famous for lu...

Byteland county is very famous for luminous jewels. Luminous jewels are used in making beautiful necklaces. A necklace consists of various luminous jewels of particular colour. Nec

General Tree, How to create an General Tree and how to search general tree?...

How to create an General Tree and how to search general tree?

Postorder traversal of a binary tree, Postorder traversal of a binary tree ...

Postorder traversal of a binary tree struct NODE { struct NODE *left; int value;     /* can take any data type */ struct NODE *right; }; postorder(struct NODE

Queue, 1. Show the effect of each of the following operations on queue q. A...

1. Show the effect of each of the following operations on queue q. Assume that y (type Character) contains the character ‘&’. What are the final values of x and success (type boole

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd