Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

Multidimensional array, Q. The system allocates the memory for any of the m...

Q. The system allocates the memory for any of the multidimensional array from a big single dimensional array. Describe two mapping schemes that help us to store the two dimensi

Applications in file systems of avl trees, 1. In computer science, a classi...

1. In computer science, a classic problem is how to dynamically store information so as to let for quick look up. This searching problem arises frequently in dictionaries, symbol t

An undirected graph g with n vertices and e edges, An undirected graph G wi...

An undirected graph G with n vertices and e edges is shown by adjacency list.  What is the time required to generate all the connected components? O (e+n)

Non Recursive Algorithm to Traverse a Binary Tree, Q. Write down a non recu...

Q. Write down a non recursive algorithm to traverse a binary tree in order.                    Ans: N on - recursive algorithm to traverse a binary tree in inorder is as

Last in first out method, This method is the reverse of FIFO and assumes th...

This method is the reverse of FIFO and assumes that each issue of stock is made from latest items received in the enterprises .Thus if the last lot to be received is not sufficient

Complexity of an algorithm, compare two functions n and 2n for various valu...

compare two functions n and 2n for various values of n. determine when second becomes larger than first

Find the shortest paths from bellman-ford algorithm, a) Find the shortest p...

a) Find the shortest paths from r to all other nodes in the digraph G=(V,E) shown below using the Bellman-Ford algorithm (as taught in class). Please show your work, and draw the f

Calculate the k-th power and recursive algorithem, 1. The following is a r...

1. The following is a recursive algorithm to calculate the k -th power of 2. Input k a natural number Output kth power of 2 Algorithem: If k =0then return 1 Else return 2* po

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd