Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

Explain in brief about the container, Explain in brief about the Container ...

Explain in brief about the Container An entity which holds finitely many other entities. Just as containers such as boxes, baskets, bags, pails, cans, drawers, and so for

Algorithm to find maximum and minimum numbers, Give an algorithm to find bo...

Give an algorithm to find both the maximum and minimum of 380 distinct numbers that uses at most 568 comparisons.

Define container in terms of object-oriented terms, Define container in te...

Define container in terms of  object-oriented terms A Container is a broad category whose instances are all more specific things; there is never anything which is just a Contai

Data structures, I am looking for assignment help on the topic Data Structu...

I am looking for assignment help on the topic Data Structures. It would be great if anyone help me.

Rules for abstract data type-tree, null(nil) = true                     // ...

null(nil) = true                     // nil refer for empty tree null(fork(e, T, T'))= false   //  e : element , T and T are two sub tree leaf(fork(e, nil, nil)) = true leaf(

Sparse matrix, How sparse matrix stored in the memory of a computer?

How sparse matrix stored in the memory of a computer?

Draw a b-tree., Q. Draw a B-tree of order 3 for the sequence of keys writte...

Q. Draw a B-tree of order 3 for the sequence of keys written below: 2, 4, 9, 8, 7, 6, 3, 1, 5, 10

What is assertions and abstract data types, Assertions and Abstract Data Ty...

Assertions and Abstract Data Types Even though we have defined assertions in terms of programs, notion can be extended to abstract data types (which are mathematical entities).

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd