Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

Dataset for dmi, The following DNA sequences are extracted from promoter re...

The following DNA sequences are extracted from promoter region of genes which are co-regulated by the same transcription factor (TF). The nucleotide segments capitalized in the giv

Stack, how we will make projects on stack in c?

how we will make projects on stack in c?

Define algorithm, What is an Algorithm? An algorithm is a sequence of u...

What is an Algorithm? An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for getting a needed output for any legitimate input in a finite amoun

Explain worst fit method, Worst Fit method:- In this method the system alw...

Worst Fit method:- In this method the system always allocate a portion of the largest free block in memory. The philosophy behind this method is that by using small number of a ve

Representing sparse matrix in memory using array, Q. What do you understand...

Q. What do you understand by the term sparse matrix? How sparse matrix is stored in the memory of a computer? Write down the function to find out the transpose of a sparse matrix u

The number of different directed trees with 3 nodes, The number of differen...

The number of different directed trees with 3 nodes are ?? The number of disimilar directed trees with three nodes are 3

Road transport booking system, what algorithms can i use for the above titl...

what algorithms can i use for the above title in my project desing and implmentation of road transport booking system

Functions for inserting and deleting at either of the end, Q. Develop a rep...

Q. Develop a representation for a list where insertions and deletions can be done at either end. Such a structure is known as a Deque (Double ended queue). Write functions for inse

Cohen sutherland algorithm, Using the cohen sutherland. Algorithm. Find the...

Using the cohen sutherland. Algorithm. Find the visible portion of the line P(40,80) Q(120,30) inside the window is defined as ABCD A(20,20),B(60,20),C(60,40)and D(20,40)

Demonstrate that dijkstra''s algorithm, Demonstrate that Dijkstra's algorit...

Demonstrate that Dijkstra's algorithm does not necessarily work if some of the costs are negative by finding a digraph with negative costs (but no negative cost dicircuits) for whi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd