Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

State algorithm to insert node p at the end of a linked list, Algo rithm t...

Algo rithm to Insert a Node p at the End of a Linked List is explained below Step1:   [check for space] If new1= NULL output "OVERFLOW" And exit Step2:   [Allocate fr

Implementation of a binary tree, Like general tree, binary trees are implem...

Like general tree, binary trees are implemented through linked lists. A typical node in a Binary tree has a structure as follows struct NODE { struct NODE *leftchild; i

What is an unreachable code assertion, What is an unreachable code assertio...

What is an unreachable code assertion An unreachable code assertion can be placed at the default case; if it's every executed, then program is in an erroneous state. A loop in

Stack, Explain the array and linked list implementation of stack

Explain the array and linked list implementation of stack

Merging, merging 4 sorted files containing 50 10 25 and 15 records will tak...

merging 4 sorted files containing 50 10 25 and 15 records will take time

Prims algorithm, Prim's algorithm employs the concept of sets. Rather than ...

Prim's algorithm employs the concept of sets. Rather than processing the graph by sorted order of edges, this algorithm processes the edges within the graph randomly by building up

Binry trees, Build a class ?Node?. It should have a ?value? that it stores ...

Build a class ?Node?. It should have a ?value? that it stores and also links to its parent and children (if they exist). Build getters and setters for it (e.g. parent node, child n

An algorithm to insert a node in beginning of linked list, Q. Write down an...

Q. Write down an algorithm to insert a node in the beginning of the linked list.                         Ans: /* structure containing a link part and link part

Execute algorithm to convert infix into post fix expression, Q. Execute you...

Q. Execute your algorithm to convert the infix expression to the post fix expression with the given infix expression as input Q = [(A + B)/(C + D) ↑ (E / F)]+ (G + H)/ I

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd