Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

Addressing modes, Compare zero-address, one-address, two-address, and three...

Compare zero-address, one-address, two-address, and three-address machines by writing programs to compute: Y = (A – B X C) / (D + E X F) for each of the four machines. The inst

Complexity classes, Complexity classes All decision problems fall in se...

Complexity classes All decision problems fall in sets of comparable complexity, called as complexity classes. The complexity class P is the set of decision problems which ca

Merge sort , What is the best-case number of comparisons performed by merge...

What is the best-case number of comparisons performed by mergesort on an input sequence of 2 k distinct numbers?

Basic concept of the primitive data structures, Q. Explain the basic concep...

Q. Explain the basic concept of the primitive data structures.                                             Ans. The concept of P r i m i t i ve Data

Flowchart, conversion of centrigral to frahenhit

conversion of centrigral to frahenhit

Algorithm, Algorithm to find sum of square of a number

Algorithm to find sum of square of a number

Algorithm to delete the specific node from binary searchtree, Q. Write down...

Q. Write down an algorithm to delete the specific node from binary search tree. Trace the algorithm to delete a node (10) from the following given tree. Ans. Algor

Comparisions and assignments in worst case, Q. Calculate that how many key ...

Q. Calculate that how many key comparisons and assignments an insertion sort makes in its worst case?        Ans: The worst case performance occurs in insertion

Pseudocodes, how to write a pseudo code using Kramer''s rule

how to write a pseudo code using Kramer''s rule

Complexity of an algorithm, Q. Explain the complexity of an algorithm?  Wha...

Q. Explain the complexity of an algorithm?  What are the worst case analysis and best case analysis explain with an example.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd