Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

What is a binary search tree (bst), What is a Binary Search Tree (BST)? ...

What is a Binary Search Tree (BST)? A binary search tree B is a binary tree every node of which satisfies the three conditions: 1.  The value of the left-subtree of 'x' is le

Program on radix sort., Write a program that uses the radix sort to sort 10...

Write a program that uses the radix sort to sort 1000 random digits. Print the data before and after the sort. Each sort bucket should be a linked list. At the end of the sort, the

Determine about the logic gates, Determine about the logic gates Many e...

Determine about the logic gates Many electronic circuits operate using binary logic gates. Logic gates essentially process signals that represent true or false or equivalent i.

Algorithm, what algorithms can i use for the above title in my project desi...

what algorithms can i use for the above title in my project desing and implmentation of road transport booking system

Find the optimal control, 1. Use the Weierstrass condition, find the (Stron...

1. Use the Weierstrass condition, find the (Strongly) minimizing curve and the value of J min for the cases where x(1) = 0, x(2) = 3. 2. The system = x 1 + 2u; where

Hasing and indexing, differentiate between indexing and hashing in file org...

differentiate between indexing and hashing in file organization

Financial index data analysis, need c++ algorithmic software program to der...

need c++ algorithmic software program to derive one numerical outcome from 10 levels of variables with 135 combinations cross computed

State about the bit string, State about the Bit String Carrier set of...

State about the Bit String Carrier set of the Bit String ADT is the set of all finite sequences of bits, including empty strings of bits, which we denote λ. This set is {λ, 0

Relation of time and space complexities of an algorithm, What is complexity...

What is complexity of an algorithm? What is the basic relation between the time and space complexities of an algorithm? Justify your answer by giving an example.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd