Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

Preorder traversal of a binary tree, Preorder traversal of a binary tree ...

Preorder traversal of a binary tree struct NODE { struct NODE *left; int value;     /* can take any data type */ struct NODE *right; };   preorder(struct N

Accept a file and form a binary tree - huffman encoding, Huffman Encoding i...

Huffman Encoding is one of the very simple algorithms to compress data. Even though it is very old and simple , it is still widely used (eg : in few stages of JPEG, MPEG etc). In t

Illustrate the varieties of arrays, Varieties of Arrays In some languag...

Varieties of Arrays In some languages, size of an array should be established once and for all at program design time and can't change during execution. Such arrays are known a

Insertion of element into a linked list, ALGORITHM (Insertion of element in...

ALGORITHM (Insertion of element into a linked list) Step 1 Begin the program Step 2 if the list is empty or any new element comes before the start (head) element, then add t

BINARY SEARCH, GIVE TRACE OF BINARY SEARCH ALGORITHM BY USING A SUITABLE EX...

GIVE TRACE OF BINARY SEARCH ALGORITHM BY USING A SUITABLE EXAMPLE.

Illustrate the operations of the symbol abstract data type, The operations ...

The operations of the Symbol ADT The operations of the Symbol ADT are the following. a==b-returns true if and only if symbols a and bare identical. a symbol bin Unico

Difference between prism''s and kruskal''s algorithm, Difference among Pris...

Difference among Prism's and Kruskal's Algorithm In Kruskal's algorithm, the set A is a forest. The safe edge added to A is always a least-weight edge in the paragraph that lin

Algorithm for finding a key by binary search technique, Q. Write down an al...

Q. Write down an algorithm for finding a key from a sorted list using the binary search technique or method.

Technique for direct search, Technique for direct search is    Hashing ...

Technique for direct search is    Hashing is the used for direct search.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd