Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

Rotations in binary tree, H o w can you r ot a t e a B i n a r y...

H o w can you r ot a t e a B i n a r y Tr e e? E x pl a i n r i g h t a n d l eft r ot a tion s by taking an e x a mpl e.   If after

Design a doubly linked list, Instructions : You have to design a dou...

Instructions : You have to design a doubly linked list container. The necessary classes and their declarations are given below The main() function for testing the yo

Procedure of analysis of algorithm, Example 1:  Following are Simple sequen...

Example 1:  Following are Simple sequence of statements Statement 1;  Statement 2; ... ... Statement k; The entire time can be found out through adding the times for

Construct a minimum spanning tree, Construct G for α, n, and W given as com...

Construct G for α, n, and W given as command line parameters. Throw away edges that have an asymmetric relation between nodes. That is, if A is connected to B, but B is not connect

How does an array differ from an ordinary variable, Normal 0 fa...

Normal 0 false false false EN-IN X-NONE X-NONE MicrosoftInternetExplorer4

Pre-order and post order traversal of a binary tree, The pre-order and post...

The pre-order and post order traversal of a Binary Tree generates the same output. The tree can have maximum One node

Doubly linked lists-implementation, In any singly linked list, each of the ...

In any singly linked list, each of the elements contains a pointer to the next element. We have illustrated this before. In single linked list, traversing is probable only in one d

Sorting algorithm is best if the list is already sorted, Which sorting algo...

Which sorting algorithm is best if the list is already sorted? Why? Insertion sort as there is no movement of data if the list is already sorted and complexity is of the order

Whether the infix expression has balanced parenthesis or not, Using stacks,...

Using stacks, write an algorithm to determine whether the infix expression has balanced parenthesis or not Algorithm parseparens This algorithm reads a source program and

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd