Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

Representation of records, Records are mapped onto a computer store by simp...

Records are mapped onto a computer store by simply juxtaposing their elements. The address of a component (field) r relative to the origin address of the record r is named the fiel

Decision tree - id3 algorithm, Decision Tree - ID3 algorithm: Imagine ...

Decision Tree - ID3 algorithm: Imagine you only ever do one of the following four things for any weekend:   go shopping   watch a movie   play tennis   just

State the output of avaerage value of numbers, Draw trace table and determi...

Draw trace table and determine output from the subsequent flowchart using below data:  X = 5, -3, 0, -3, 7, 0, 6, -11, -7, 12

Define binary tree, Define Binary Tree  A binary tree T is explained as...

Define Binary Tree  A binary tree T is explained as a finite set of nodes that is either empty or having of root and two disjoint binary trees TL, and TR known as, respectively

What is quick sort, What is quick sort?   Answer Quick sort is on...

What is quick sort?   Answer Quick sort is one of the fastest sorting algorithm used for sorting a list. A pivot point is chosen. Remaining elements are divided or portio

What is bubble sort, What is bubble sort? Bubble Sort: The basic ide...

What is bubble sort? Bubble Sort: The basic idea in bubble sort is to scan the array to be sorted sequentially various times. Every pass puts the largest element in its corr

A binary tree in which levels except possibly the last, A binary tree in wh...

A binary tree in which if all its levels except possibly the last, have the maximum number of nodes and all the nodes at the last level appear as far left as possible, is called as

Degree of node, Q. The degree of a node is defined as the number of childre...

Q. The degree of a node is defined as the number of children it has. Shear show that in any binary tree, the total number of leaves is one more than the number of nodes of degree 2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd