Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

Depth First Search Through Un-weighted Connected Graph , Q. Write down the ...

Q. Write down the algorithm which does depth first search through an un-weighted connected graph. In an un-weighted graph, would breadth first search or depth first search or neith

Non-recursive algorithm, Q .  Write down the non-recursive algorithm to tra...

Q .  Write down the non-recursive algorithm to traverse a tree in preorder. Ans: T he Non- Recursive algorithm for preorder traversal is written below: Initially i

Illustrate the wire frame representation, RENDERING, SHADING AND COLOURING ...

RENDERING, SHADING AND COLOURING By introducing hidden line removal we have already taken one step away from wire-frame drawings towards being able to realistically model and d

Define minimum spanning tree, Define Minimum Spanning Tree A minimum sp...

Define Minimum Spanning Tree A minimum spanning tree of a weighted linked graph is its spanning tree of the smallest weight, where the weight of a tree is explained as the sum

Implementation of stack, Before programming a problem solution those employ...

Before programming a problem solution those employees a stack, we have to decide how to represent a stack by using the data structures which exist in our programming language. Stac

How to construct binary tree, Q. A Binary tree comprises 9 nodes. The preor...

Q. A Binary tree comprises 9 nodes. The preorder and inorder traversals of the tree yield the given sequence of nodes: Inorder :          E     A    C    K    F     H    D

Two broad classes of collision resolution techniques, Two broad classes of ...

Two broad classes of collision resolution techniques are A) open addressing and B) chaining

Conversion of general trees to binary trees, Taking a suitable example expl...

Taking a suitable example explains how a general tree can be shown as a Binary Tree. Conversion of general trees to binary trees: A general tree can be changed into an equiv

Hash clash, Q. What do you understand by the term by hash clash? Explain in...

Q. What do you understand by the term by hash clash? Explain in detail any one method to resolve the hash collisions.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd