Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

Explain in brief about the container, Explain in brief about the Container ...

Explain in brief about the Container An entity which holds finitely many other entities. Just as containers such as boxes, baskets, bags, pails, cans, drawers, and so for

Memory allocation strategies, Q. Explain the various memory allocation stra...

Q. Explain the various memory allocation strategies.                                                            Ans. M e m ory Allocation Strategies are given as follow

Rooted tree, It does not have any cycles (circuits, or closed paths), which...

It does not have any cycles (circuits, or closed paths), which would imply the existence of more than one path among two nodes. It is the most general kind of tree, and might be co

Objectives of algorithms, After learning this, you will be able to: u...

After learning this, you will be able to: understand the concept of algorithm; understand mathematical foundation underlying the analysis of algorithm; to understand se

Add the special form let to the metacircular interpreter, (1)  (i) Add the ...

(1)  (i) Add the special form let to the metacircular interpreter Hint: remember let is just syntactic sugar for a lambda expression and so a rewrite to the lambda form is all t

Techniques of representing polynomials using arrays, Q. Explain any three m...

Q. Explain any three methods or techniques of representing polynomials using arrays. Write which method is most efficient or effective for representing the following polynomials.

Define merge sort, Define Merge Sort  Merge sort is a perfect example ...

Define Merge Sort  Merge sort is a perfect example of a successful application of the divide and conquer method. It sorts a given array A[0...n-l] by separating it into two ha

Algorithm to count number of nodes, Write an algorithm to count number of n...

Write an algorithm to count number of nodes in the circular linked list.                            Ans. Counting No of Nodes in Circular List Let list be a circular h

Write stream analogues of list processing functions, (a) Write (delay ) as...

(a) Write (delay ) as a special form for (lambda () ) and (force ), as discussed in class. (b) Write (stream-cons x y) as a special form, as discussed in class. (c) Write

Disadvantages of the lifo costing method, The disadvantages or limitations ...

The disadvantages or limitations of the last in first out costing method are: The election of last in first out for income tax purposes is binding for all subsequent yea

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd