Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)


Related Discussions:- Algorithm of decorated graph

Prefix and Postfix Expressions, Q.   Draw the expression tree of the infix ...

Q.   Draw the expression tree of the infix expression written below and then  convert it intoPrefix and Postfix expressions. ((a + b) + c * (d + e) + f )* (g + h )

Binary search, Write the algorithm for Binary search. Also apply this algo...

Write the algorithm for Binary search. Also apply this algorithm on the following data. 22, 44, 11, 88, 33, 55, 77, 66

Functions for inserting and deleting at either end of deque, Q. Devise a re...

Q. Devise a representation for a given list where insertions and deletions can be made at both the ends. Such a structure is called Deque (which means Double ended queue). Write fu

Find a minimum cost spanning arborescence rooted, Find a minimum cost spann...

Find a minimum cost spanning arborescence rooted at r for the digraph shown below, using the final algorithm shown in class. Please show your work, and also give a final diagram wh

Define approximating smooth surfaces with polygon nets, Approximating smoot...

Approximating smooth surfaces with Polygon nets Networks of polygons are used to represent smooth surfaces. They are, of course, only an approximation to the true surface, but

Drawback of sequential file, Following are some of the drawback of sequenti...

Following are some of the drawback of sequential file organisation: Updates are not simply accommodated. By definition, random access is impossible. All records should be

Explain the concept of colouring, Colouring The use of colours in CAD/C...

Colouring The use of colours in CAD/CAM has two main objectives : facilitate creating geometry and display images. Colours can be used in geometric construction. In this case,

Abstract data type-stack, Conceptually, the stack abstract data type mimics...

Conceptually, the stack abstract data type mimics the information kept into a pile on a desk. Informally, first we consider a material on a desk, where we might keep separate stack

Explain worst fit method, Worst Fit method:- In this method the system alw...

Worst Fit method:- In this method the system always allocate a portion of the largest free block in memory. The philosophy behind this method is that by using small number of a ve

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd