Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
BJTs have some benefits over MOSFETs for at least two digital applications. Very first, in high speed switching, they do not comprises the "larger" capacitance from gate, which while multiplied by the resistance of the channel provides the intrinsic time constant of the process. The intrinsic time constant places a boundary on the speed a MOSFET can operate at since higher frequency signals are filtered out. Widening the channel decreases the resistance of channel, but raises the capacitance by closely the same amount. Reducing the width of the channel increases the resistance, but decreases the capacitance by similar amount. R*C=Tc1, 0.5R*2C=Tc1, 2R*0.5C=Tc1. There is no way to minimize the intrinsic time constant for a specific process. Different processes by using different gate thicknesses, channel lengths, channel heights, and materials will have different intrinsic time constants. This problem is mostly prevented with a BJT as it does not have a gate.
The 2nd application in which BJTs have a benefit over MOSFETs stems from the first. While driving several other gates, called fan out, the resistance of the MOSFET is in series along with the gate capacitances of the other FETs, making a secondary time constant. Delay circuits make use of this fact to make a fixed signal delay by using a small CMOS device to send a signal to many other, several times larger CMOS devices. The secondary time constant could be minimized by raising the driving FET's channel width to reduce its resistance and decreasing the channel widths of the FETs being driven, reducing their capacitance. The drawback is that it raises the capacitance of the driving FET and increases the resistance of the FETs being driven, but generally these drawbacks are a minimal problem when as compared to the timing problem. BJTs are better capable to drive the other gates because they can output more current than MOSFETs, permitting for the FETs being driven to charge faster. Several chips use MOSFET inputs and BiCMOS outputs.
Q. The energy stored in a 2-µH inductor is given by w L (t) = 9e -2t µJ for t ≥ 0. Find the inductor current and voltage at t = 1 s.
Explain the suitability of copper that is used as electrical conducting materials. Copper : Pure annealed is utilized for the winding of electrical machines. High pur
Voltage regulator: A voltage regulator is an electrical regulator intended to automatically keep a constant voltage level. A voltage regulator is an instance of a negative fee
Q. Illustrate the Simplex Transmission? Simplex Transmission Data in a simplex channel is always one way. Simplex channels aren't often used as it is not possible to send ba
Q. What is Pinch - off voltage? The reverse bias is relatively large near the source. As a result, the depletion region intrudes into the channel near the drain, and the effec
explain measurement of frqueny and phase using cro
Consider the following signals, sketch each one of them and comment on the periodic nature: (a) x(t) = A cos(2πf 0 t + θ), where A, f 0 , and θ are the amplitude, frequency, and
Q. Two coupled synchronous machines are used as a motor-generator set to link a 25-Hz system to a 60-Hz system. Find the three highest speeds at which this linkage would be possibl
An external resistance of 10 Ω is linked to the terminal of a battery having 10 cells connected in series. Emf for every cells and internal resistance is 1.5V and 0.2Ω . Find the
Compound motor It is possible to arrange for part of the field coil to be in series with the armature and part in parallel This gives rise to a motor with a mix
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd