Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The actual solution is the specific solution to a differential equation which not only satisfies the differential equation, although also satisfies the specified initial conditions.
Illustration: What is the actual solution to the subsequent IVP?
2ty' + 4y = 3; y(1) = -4
Solution: This is in fact easier to do than this might at first appear. From the earlier illustration we already identify that differential equations have all solutions are of the form:
y(t) = 3/4 + c/t2
All that we require to do is find out the value of c that will provide us the solution that we're after. To determine this all we require do is utilize our initial condition that are given as:
-4 = y(1) = 3/4 + c/12
c= -4 -3/4 = -19/4
Thus, the actual solution to the Initial Value Problem is:
y(t) = ¾ - 19/4t2
From this last illustration we can notice that once we have the general solution to a differential equation determining the actual solution is nothing more than applying the initial conditions and resolving for the constants which are in the general solution.
Evaluate following limits. Solution In this case we also contain a 0/0 indeterminate form and if we were actually good at factoring we could factor the numerator & den
What are the Input and Output of Marketing
Suppose that the width of a rectangle is three feet shorter than length and that the perimeter of the rectangle is 86 feet. a) Set up an equation for the perimeter involving on
How do you do converting metric units?
2/4 + 3/4 =
Describe about Arithmetic and Geometric Series? When the terms of a sequence are added together instead of separated by commas, the sequence becomes a series. You will use seri
Peter purchased 14 latest baseball cards for his collection. This increased the size of his collection through 35%. How many baseball cards does Peter now have? First, you must
what are rules of triangles?
A lobster catcher spends $12 500 per month to maintain a lobster boat. He plans to catch an average of 20 days per month during lobster season. For each day, he must allow approx
pythagoras theorem
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd