Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The actual solution is the specific solution to a differential equation which not only satisfies the differential equation, although also satisfies the specified initial conditions.
Illustration: What is the actual solution to the subsequent IVP?
2ty' + 4y = 3; y(1) = -4
Solution: This is in fact easier to do than this might at first appear. From the earlier illustration we already identify that differential equations have all solutions are of the form:
y(t) = 3/4 + c/t2
All that we require to do is find out the value of c that will provide us the solution that we're after. To determine this all we require do is utilize our initial condition that are given as:
-4 = y(1) = 3/4 + c/12
c= -4 -3/4 = -19/4
Thus, the actual solution to the Initial Value Problem is:
y(t) = ¾ - 19/4t2
From this last illustration we can notice that once we have the general solution to a differential equation determining the actual solution is nothing more than applying the initial conditions and resolving for the constants which are in the general solution.
if one side of a square is increased 4 inches and an adjacement side is multiplied by 4, the perimeter of the resulting rectangle is 3 times the perimeter of the square. find the s
lcm method of 648
G raph y = sec ( x ) Solution: As with tangent we will have to avoid x's for which cosine is zero (recall that sec x =1/ cos x) Secant will not present at
A palm tree of heights 25m is broken by storm in such a way that its top touches the ground at a distance of 5m from its root,but is not separated from the tree.Find the height at
4562388/955
12. List the merits and limitations of using North West corner rule.
limits
Find out the volume of the solid obtained by rotating the region bounded by x = (y - 2) 2 and y = x around the line y = -1. Solution : We have to first get the intersection
Determine dy & Δy if y = cos ( x 2 + 1) - x as x changes from x = 2 to x = 2.03 . Solution Firstly let's deetrmine actual the change in y, Δy . Δy = cos (( 2.03) 2
Example1 : Solve the subsequent system of equations. -2x 1 + x 2 - x 3 = 4 x 1 + 2x 2 + 3x 3 = 13 3x 1 + x 3 = -1 Solution The initial step is to write d
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd