Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The actual solution is the specific solution to a differential equation which not only satisfies the differential equation, although also satisfies the specified initial conditions.
Illustration: What is the actual solution to the subsequent IVP?
2ty' + 4y = 3; y(1) = -4
Solution: This is in fact easier to do than this might at first appear. From the earlier illustration we already identify that differential equations have all solutions are of the form:
y(t) = 3/4 + c/t2
All that we require to do is find out the value of c that will provide us the solution that we're after. To determine this all we require do is utilize our initial condition that are given as:
-4 = y(1) = 3/4 + c/12
c= -4 -3/4 = -19/4
Thus, the actual solution to the Initial Value Problem is:
y(t) = ¾ - 19/4t2
From this last illustration we can notice that once we have the general solution to a differential equation determining the actual solution is nothing more than applying the initial conditions and resolving for the constants which are in the general solution.
3 1/2 x 1 4/7 x 1 1/3
There is one final topic that we need to address as far as solution sets go before leaving this section. Consider the following equation and inequality.
On each day t of n days, N customers of a supermarket were sampled and the number Xt expressing dissatisfaction was recorded. The results suggested that there were good and bad day
area of r=asin3x
For the pair of supply-and-demand equations, where x represents the quantity demanded in units of 1000 and p is the unit price in dollars, find the equilibrium quantity and the equ
how to present root numbers on a number line
How do I proceed with a project on Shares and Dividends?
In the innovations algorithm, show that for each n = 2, the innovation Xn - ˆXn is uncorrelated with X1, . . . , Xn-1. Conclude that Xn - ˆXn is uncorrelated with the innovations X
what is the least number of faces and bases the paperweight could have?
A and B can finish a piece of work in 16 days and 12 days respectively.A started a work and worked at it for 2 days.He was then joined by B.Find the total time taken to finish the
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd