Acquire a transformation matrix for perspective projection, Computer Graphics

Assignment Help:

Acquire a transformation matrix for perspective projection for a specified object projected onto x=3 plane as viewed by (5,0,0).

Solution: Plane of projection: x = 3 as given. Here assume that P (x, y, z) be any point in the space. We identify the parametric equation of a line AB, beginning from A and passing   via B is like:

1111_Acquire a transformation matrix for perspective projection 1.png

Figure: (i)

P (t) = A + t. (B - A), o < t < ∞

Consequently parametric equation of a line starting from E (5,0,0) and also passing via P (x, y, z) becomes:

E + t (P - E), o < t < ∞

=  (5, 0, 0) + t [(x, y, z) - (5, 0, 0)]

= (5, 0, 0) + [t (x - 5), t. y, t. z]

= [t. (x - 5) + 5, t. y, t. z].

Suppose here Point P' is obtained, as t = t*

∴ P' = (x', y', z') = [t* (x - 5) + 5, t*y, t*. z]

Because, P' lies on x = 3 plane, consequently

t* (x - 5) + 5 = 3 should be actual;

t* = -2/(x - 5)

P' = (x',y',z') = (3,((-2.z)/(x-5)), ((-2.z)/(x-5)))

= ((3x-15)/(x- 5), (-2y)/(x - 5), (-2z)/(x - 5))

In Homogeneous coordinate system there is:

P' = (x', y', z', 1) = ((3x-15)/(x- 5), (-2y)/(x - 5), (-2z)/(x - 5), 1)

= (3x - 15, - 2.y, - 2.z, x - 5)                  --------------(1)

In Matrix form it will be:

341_Acquire a transformation matrix for perspective projection 2.png

------------------------------(2)

Hence, as in above equation (2) is the needed transformation matrix for perspective view from (5, 0, 0).


Related Discussions:- Acquire a transformation matrix for perspective projection

Homogeneous coordinate systems - 2-d and 3-d transformations, Homogeneous C...

Homogeneous Coordinate Systems - 2-d and 3-d transformations Suppose P(x,y) be any point in 2-D Euclidean (Cartesian) system. In HC System, we add a third coordinate to a poin

Liang b arsky line clipping algorithm, Write the Liang B arsky line clippin...

Write the Liang B arsky line clipping algorithm. Why is Liang Barsky algorithm more efficient than the Cohen Sutherland algorithm?  Liang Barsky Line Clipping: Faster line cl

., Define the working procedure of CRT with diagram

Define the working procedure of CRT with diagram

What is the need of homogeneous coordinates, What is the need of homogeneou...

What is the need of homogeneous coordinates?  To perform more than one transformation at a time, use homogeneous coordinates or matrixes. They decrease unwanted calculations in

What is multimedia, What is Multimedia: People only remember 20 percent of...

What is Multimedia: People only remember 20 percent of what they see and 30 percent of what they hear. But they keep in mind 50 percent of what they see and hear and as much as 80

Approaches to area filling - output primitives, Approaches to Area Filling ...

Approaches to Area Filling  Some other approaches to area filling are   Scan line polygon fill algorithm Boundary fill algorithm Flood fill algorithm.

Explain the role of the prefight personnel, QUESTION a) Once a print jo...

QUESTION a) Once a print job is accepted by the print service provider, it will be assigned a job number and this information will become part of a printed job ticket, which wi

What happens while two polygons have similar z value , What happens while t...

What happens while two polygons have similar z value and the z-buffer algorithm is utilized? Solution : z-buffer algorithms, varies colors at a pixel if z(x,y)

How many times will vertex appear in the intersection points, 1. For the po...

1. For the polygon shown in Figure on the next page, how many times will the vertex V 1 appear in the set of intersection points for the scan line passing through that point?  How

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd