Acquire a transformation matrix for perspective projection, Computer Graphics

Assignment Help:

Acquire a transformation matrix for perspective projection for a specified object projected onto x=3 plane as viewed by (5,0,0).

Solution: Plane of projection: x = 3 as given. Here assume that P (x, y, z) be any point in the space. We identify the parametric equation of a line AB, beginning from A and passing   via B is like:

1111_Acquire a transformation matrix for perspective projection 1.png

Figure: (i)

P (t) = A + t. (B - A), o < t < ∞

Consequently parametric equation of a line starting from E (5,0,0) and also passing via P (x, y, z) becomes:

E + t (P - E), o < t < ∞

=  (5, 0, 0) + t [(x, y, z) - (5, 0, 0)]

= (5, 0, 0) + [t (x - 5), t. y, t. z]

= [t. (x - 5) + 5, t. y, t. z].

Suppose here Point P' is obtained, as t = t*

∴ P' = (x', y', z') = [t* (x - 5) + 5, t*y, t*. z]

Because, P' lies on x = 3 plane, consequently

t* (x - 5) + 5 = 3 should be actual;

t* = -2/(x - 5)

P' = (x',y',z') = (3,((-2.z)/(x-5)), ((-2.z)/(x-5)))

= ((3x-15)/(x- 5), (-2y)/(x - 5), (-2z)/(x - 5))

In Homogeneous coordinate system there is:

P' = (x', y', z', 1) = ((3x-15)/(x- 5), (-2y)/(x - 5), (-2z)/(x - 5), 1)

= (3x - 15, - 2.y, - 2.z, x - 5)                  --------------(1)

In Matrix form it will be:

341_Acquire a transformation matrix for perspective projection 2.png

------------------------------(2)

Hence, as in above equation (2) is the needed transformation matrix for perspective view from (5, 0, 0).


Related Discussions:- Acquire a transformation matrix for perspective projection

Picture information - raster graphics and clipping, Picture Information - ...

Picture Information - Raster Graphics and  Clipping Now, the picture information is accumulated in the form of bit plans on which all bit plane complete information of pictur

Mathematics-applications for computer animation, Mathematics: There are so...

Mathematics: There are some area like Probability, combination, permutation, etc.,that can be well explained along with the help of animation, that helps in enhancing the learning

Non trivial case of cohen sutherland line clippings, Non Trivial Case of co...

Non Trivial Case of cohen sutherland line clippings Case: assume for the line segment PQ, both the trivial rejection and acceptance tests failed (that is, Case 1 and Case 2

Modelling and rendering a surface, Modelling and Rendering a surface Com...

Modelling and Rendering a surface Common practice in modelling and rendering a surface is to approximate it by a polygonal surface.  By a polygonal surface we mean a surface whi

Relation between polar coordinate and cartesian system, Relation between po...

Relation between polar coordinate system and Cartesian system A frequently utilized non-cartesian system is Polar coordinate system. The subsequent figure A demonstrates a pol

What is the use of control points, What is the use of control points?  ...

What is the use of control points?  Spline curve can be specified by giving a set of coordinate positions known as control points, which shows the general shape of the curve, c

What do you understood by the term graphic primitives, 1. What do you unde...

1. What do you understood by the term graphic primitives? Ans. Graphic primitives are the basic graphic objects that can be united in any number and method to produce a new i

Plane equation - spatial orientation of the surface element, Plane equation...

Plane equation - spatial orientation of the Surface Element For some of Plane equation procedures, we have information regarding the spatial orientation of the individual surf

Transformation, Explain window to view port transformation

Explain window to view port transformation

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd