Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable programming languages are equivalent in their power. Rather, we want to know if there is an algorithm for solving it that can be expressed in any rigorous way at all. Similarly, we are not asking about whether the problem can be solved on any particular computer, but whether it can be solved by any computing mechanism, including a human using a pencil and paper (even a limitless supply of paper).
What we need is an abstract model of computation that we can treat in a rigorous mathematical way. We'll start with the obvious model:
Here a computer receives some input (an instance of a problem), has some computing mechanism, and produces some output (the solution of that instance). We will refer to the con?guration of the computing mechanism at a given point in it's processing as its internal state. Note that in this model the computer is not a general purpose device: it solves some speci?c problem. Rather, we consider a general purpose computer and a program to both be part of a single machine. The program, in essence, specializes the computer to solve a particular problem.
turing machine for prime numbers
Claim Under the assumptions above, if there is an algorithm for checking a problem then there is an algorithm for solving the problem. Before going on, you should think a bit about
jhfsaadsa
For example, the question of whether a given regular language is positive (does not include the empty string) is algorithmically decidable. "Positiveness Problem". Note that
De?nition (Instantaneous Description) (for both DFAs and NFAs) An instantaneous description of A = (Q,Σ, δ, q 0 , F) , either a DFA or an NFA, is a pair h q ,w i ∈ Q×Σ*, where
unification algorithm
State and Prove the Arden's theorem for Regular Expression
The class of Strictly Local Languages (in general) is closed under • intersection but is not closed under • union • complement • concatenation • Kleene- and positive
short application for MISD
It is not hard to see that ε-transitions do not add to the accepting power of the model. The underlying idea is that whenever an ID (q, σ v) directly computes another (p, v) via
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd