Abstract model for an algorithm solving a problem, Theory of Computation

Assignment Help:

These assumptions hold for addition, for instance. Every instance of addition has a unique solution. Each instance is a pair of numbers and the possible solutions include any third number. We can systematically list all instances along with all possible solutions by systematically listing all triples of numbers. This is not completely trivial-we can't, for instance, list all triples starting with 0 and then all triples starting with 1, etc. Since there are in?nitely many triples starting with zero, we would never get around to listing any starting with one. Suppose, though, that we are only concerned with the Natural Numbers, {0, 1, . . .}. If we ?rst list all triples that sum to zero (i.e., just the triple h0, 0, 0i) and then all triples that sum to one (i.e., h1, 0, 0i, h0, 1, 0i, h0, 0, 1i), etc., we are guaranteed that we will eventually list any given triple.

With the exception of the assumption that the solution is unique (which can be fudged in a variety of ways) these assumptions are pretty nearly minimal. We can't even consider solving a problem algorithmically unless every instance has a solution. An algorithm must produce some answer for every instance. If there is no answer for some instance, then whatever answer it produces will necessarily be wrong. (Note that if we modify the problem to require that we return "No Solution" in the case that none exists, we will have converted it into a problem that has a solution for every instance-albeit one that sometimes has the solution "No Solution".) The third assumption is true of every reasonable problem. In fact, it takes a fairamount of the theory of computation to even get to the point where we can argue that problems that don't satisfy the assumption might exist. Under these assumptions we can reduce our model to a machine for checking the correctness of solutions:

1809_Abstract model for an algorithm solving a problem.png


Related Discussions:- Abstract model for an algorithm solving a problem

Turing machine , Let ? ={0,1} design a Turing machine that accepts L={0^m ...

Let ? ={0,1} design a Turing machine that accepts L={0^m 1^m 2^m } show using Id that a string from the language is accepted & if not rejected .

Local and recognizable languages, We developed the idea of FSA by generaliz...

We developed the idea of FSA by generalizing LTk transition graphs. Not surprisingly, then, every LTk transition graph is also the transition graph of a FSA (in fact a DFA)-the one

Sketch an algorithm to recognize the language, First model: Computer has a ...

First model: Computer has a ?xed number of bits of storage. You will model this by limiting your program to a single ?xed-precision unsigned integer variable, e.g., a single one-by

Emptiness problem, The Emptiness Problem is the problem of deciding if a gi...

The Emptiness Problem is the problem of deciding if a given regular language is empty (= ∅). Theorem 4 (Emptiness) The Emptiness Problem for Regular Languages is decidable. P

Boolean operations - class of recognizable languages, Theorem The class of ...

Theorem The class of recognizable languages is closed under Boolean operations. The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a give

Strictly 2 - local automata, We will assume that the string has been augmen...

We will assume that the string has been augmented by marking the beginning and the end with the symbols ‘?' and ‘?' respectively and that these symbols do not occur in the input al

Reducibility among problems, A common approach in solving problems is to tr...

A common approach in solving problems is to transform them to different problems, solve the new ones, and derive the solutions for the original problems from those for the new ones

Non-determinism - recognizable language, Our DFAs are required to have exac...

Our DFAs are required to have exactly one edge incident from each state for each input symbol so there is a unique next state for every current state and input symbol. Thus, the ne

Give the acyclic paths through your graph, Give the Myhill graph of your au...

Give the Myhill graph of your automaton. (You may use a single node to represent the entire set of symbols of the English alphabet, another to represent the entire set of decima

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd