Abstract model for an algorithm solving a problem, Theory of Computation

Assignment Help:

These assumptions hold for addition, for instance. Every instance of addition has a unique solution. Each instance is a pair of numbers and the possible solutions include any third number. We can systematically list all instances along with all possible solutions by systematically listing all triples of numbers. This is not completely trivial-we can't, for instance, list all triples starting with 0 and then all triples starting with 1, etc. Since there are in?nitely many triples starting with zero, we would never get around to listing any starting with one. Suppose, though, that we are only concerned with the Natural Numbers, {0, 1, . . .}. If we ?rst list all triples that sum to zero (i.e., just the triple h0, 0, 0i) and then all triples that sum to one (i.e., h1, 0, 0i, h0, 1, 0i, h0, 0, 1i), etc., we are guaranteed that we will eventually list any given triple.

With the exception of the assumption that the solution is unique (which can be fudged in a variety of ways) these assumptions are pretty nearly minimal. We can't even consider solving a problem algorithmically unless every instance has a solution. An algorithm must produce some answer for every instance. If there is no answer for some instance, then whatever answer it produces will necessarily be wrong. (Note that if we modify the problem to require that we return "No Solution" in the case that none exists, we will have converted it into a problem that has a solution for every instance-albeit one that sometimes has the solution "No Solution".) The third assumption is true of every reasonable problem. In fact, it takes a fairamount of the theory of computation to even get to the point where we can argue that problems that don't satisfy the assumption might exist. Under these assumptions we can reduce our model to a machine for checking the correctness of solutions:

1809_Abstract model for an algorithm solving a problem.png


Related Discussions:- Abstract model for an algorithm solving a problem

Vogel Approximation Method(VAM, how to write program Minimum Cost Calculat...

how to write program Minimum Cost Calculation - Vogel Approximation Method(VAM

Normal forms, how to convert a grammar into GNF

how to convert a grammar into GNF

Generalization of the interpretation of local automata, The generalization ...

The generalization of the interpretation of strictly local automata as generators is similar, in some respects, to the generalization of Myhill graphs. Again, the set of possible s

Abstract model for an algorithm solving a problem, These assumptions hold f...

These assumptions hold for addition, for instance. Every instance of addition has a unique solution. Each instance is a pair of numbers and the possible solutions include any third

Third model of computation, Computer has a single LIFO stack containing ?xe...

Computer has a single LIFO stack containing ?xed precision unsigned integers (so each integer is subject to over?ow problems) but which has unbounded depth (so the stack itself nev

Myhill-nerode theorem, The Myhill-Nerode Theorem provided us with an algori...

The Myhill-Nerode Theorem provided us with an algorithm for minimizing DFAs. Moreover, the DFA the algorithm produces is unique up to isomorphism: every minimal DFA that recognizes

Non-regular languages, Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = ...

Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = {q 0 , q 1 , . . . , q n-1 } includes n states. Thinking of the automaton in terms of its transition graph, a string x is recogn

Pumping lemma, For every regular language there is a constant n depending o...

For every regular language there is a constant n depending only on L such that, for all strings x ∈ L if |x| ≥ n then there are strings u, v and w such that 1. x = uvw, 2. |u

Reducibility among problems, A common approach in solving problems is to tr...

A common approach in solving problems is to transform them to different problems, solve the new ones, and derive the solutions for the original problems from those for the new ones

Equivalence of nfas, It is not hard to see that ε-transitions do not add to...

It is not hard to see that ε-transitions do not add to the accepting power of the model. The underlying idea is that whenever an ID (q, σ  v) directly computes another (p, v) via

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd