Absolute value inequalities, Algebra

Assignment Help:

In the earlier section we solved equations which contained absolute values.  In this section we desire to look at inequalities which contain absolute values.  We will have to examine two separate cases.

Inequalities Involving < and ≤

As we did with equations let's begin by looking at a fairly simple case.

                                                         p ≤ 4

This says that no matter what p is it ought to have a distance of no more than 4 from the origin. It means that p have to be somewhere in the range,

                                                       -4 ≤ p ≤ 4

We could have alike inequality with the < and obtain a similar result.

Generally we have the following formulas to use here,

If         |p| ≤ b, b = 0    then     - b ≤ p ≤ b

If         |p| < b, b =0     then     - b < p < b


Related Discussions:- Absolute value inequalities

Help, i need help on my homework could u help me ?

i need help on my homework could u help me ?

Determine a graph which have x-intercepts, Remember that a graph will have ...

Remember that a graph will have a y-intercept at the point (0, f (0)) .  Though, in this case we have to ignore x = 0 and thus this graph will never cross the y-axis. It does get e

Negative exponents, what is the proper way to state a negative exponent whe...

what is the proper way to state a negative exponent when dividing example 27exponent -2/3 divided by 27 exponent -1/3

Algebra 1, 2x-3x=16 what do i do?.

2x-3x=16 what do i do?.

Vertical and horizontal shifts, We now can also combine the two shifts we o...

We now can also combine the two shifts we only got done looking at into single problem.  If we know the graph of f ( x ) the graph of g ( x ) = f ( x + c ) + k will be the graph of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd