Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
If y1(t) and y2(t) are two solutions to
y′′ + p (t ) y′ + q (t ) y = 0
So the Wronskian of the two solutions is,
W(y1,y2)(t) =
= for some t0.
Since we don't know the Wronskian and we don't know t0 this won't do us many good apparently. Though, we can rewrite as
W(y1,y2)(t) = ce-∫p(t) dt ...................................(3)
Here the original Wronskian sitting opposite the exponential is absorbed in the c and the evaluation of the integral at t0 will place a constant in the exponential such can also be brought out and absorbed in the constant c. Whether you don't recall how to do this return and take see the linear, first order differential equation section that we did something the same there.
Along with this rewrite we can calculate the Wronskian up to a multiplicative constant, that isn't too bad. See as well that we don't in fact need the two solutions to do that. All we require is the coefficient of the first derivative from the differential equation and provided the coefficient of the second derivative is one also.
Ask question #suppose that components of a contravariant vector A^i (for n=3)in the coordinate system (x^1,x^2,...,x^n) are A=x,A=y,A=z.Find the components A^p of the vector in the
1. a) Find the shortest paths from r to all other nodes in the digraph G=(V,E) shown below using the Bellman-Ford algorithm (as taught in class). Please show your work, and draw t
how to curve trace? and how to know whether the equation is a circle or parabola, hyperbola ellipse?
How do you solve (17+w)^2 + w^2 = (25+w)^2
how to see shares and dividends of a company and are they seen day wise?
Find out the x-y coordinates of the points in which the following parametric equations will have horizontal or vertical tangents. x = t 3 - 3t y = 3t 2 - 9 Solut
theory behind the greatest term in the binomial expansion
Q. Define Period, Amplitude and Phase Shift? Ans. Period, amplitude and phase shift are used when describing a sinusoidal curve The period of a function is the smallest
Evaluate the given definite integral. Solution Let's begin looking at the first way of dealing along with the evaluation step. We'll have to be c
A leap year has 366 days, therefore 52 weeks i.e. 52 Sunday and 2 days. The remaining 2 days may be any of the following : (i) Sunday and Monday (ii) Monday and Tuesday (iii)
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd