Abels theorem, Mathematics

Assignment Help:

If y1(t) and y2(t) are two solutions to

y′′ + p (t ) y′ + q (t ) y = 0

So the Wronskian of the two solutions is,

1583_Abels Theorem.png W(y1,y2)(t) =

=                                    for some t0.

Since we don't know the Wronskian and we don't know t0 this won't do us many good apparently. Though, we can rewrite as

W(y1,y2)(t) = ce-p(t) dt  ...................................(3)

Here the original Wronskian sitting opposite the exponential is absorbed in the c and the evaluation of the integral at t0 will place a constant in the exponential such can also be brought out and absorbed in the constant c. Whether you don't recall how to do this return and take see the linear, first order differential equation section that we did something the same there.

Along with this rewrite we can calculate the Wronskian up to a multiplicative constant, that isn't too bad. See as well that we don't in fact need the two solutions to do that.  All we require is the coefficient of the first derivative from the differential equation and provided the coefficient of the second derivative is one also.


Related Discussions:- Abels theorem

How much money does she have left, Mary has $2 in her pocket. She does yard...

Mary has $2 in her pocket. She does yard work for four various neighbors and earns $3 per yard. She then spends $2 on a soda. How much money does she have left? This translates

What''s my balance, I should have an account balance for $50.96. You took o...

I should have an account balance for $50.96. You took out $50.96 for a product on 6/18 which was NOT downloaded or delivered as it not available in the time frame I needed it. I am

Purely imaginary number, It is totally possible that a or b could be zero a...

It is totally possible that a or b could be zero and thus in 16 i the real part is zero.  While the real part is zero we frequently will call the complex numbers a purely imaginar

Knowing your learner, Here, we have tried to present some of the different ...

Here, we have tried to present some of the different thinking and learning processes of preschool and primary school children, in the context of mathematics learning. We have speci

The normal approximation to the binomial , A certain flight arrives on time...

A certain flight arrives on time 78% of the time. Suppose 1000 flights are randomly selected. Use the normal approximation to the binomial to approximate the probability that

Find the straight distance between a and b, There is a staircase as shown i...

There is a staircase as shown in figure connecting points A and B. Measurements of steps are marked in the figure. Find the straight distance between A and B. (Ans:10) A ns

Rounding, i need somehelp i am not the sharpest in the pack so plz help me ...

i need somehelp i am not the sharpest in the pack so plz help me thank you i hope you do

Arithmetic progressions, ARITHMETIC PROGRESSIONS: One  of the  endlessly a...

ARITHMETIC PROGRESSIONS: One  of the  endlessly alluring  aspects  of mathematics  is  that its thorniest  paradoxes have  a  way  of blooming  into  beautiful  theories Examp

Example of intersection, Can anybody provide me the solution of the followi...

Can anybody provide me the solution of the following example? You are specified the universal set as T = {1, 2, 3, 4, 5, 6, 7, 8} And the given subjects of the universal s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd