A composable-reset DFA (CR-DFA) is a five-tuple, Theory of Computation

Assignment Help:

Question 2 (10 pt): In this question we look at an extension to DFAs. A composable-reset DFA (CR-DFA) is a five-tuple, (Q,S,d,q0,F) where:
– Q is the set of states,
– S is the alphabet,
– d:Q×(S?{?})?Qisthetransitionfunction, – q0 ? Q is the start state, and
– F ? Q is the set of accept states.
Every CR-DFA must satisfy one additional property:
When running a CR-DFA one can take a ?-transition if and only if the input has already been exhausted, and d cannot have any cycles that have a ?-transition.
A CR-DFA differs from a DFA by the addition of a new symbol denoted ? which can only be used by the transition function. This symbol is not part of the alphabet of the DFA.
The run function for a CR-DFA is defined as follows:
dˆ 0 : Q × S * × S * ? Q dˆ0(q,e,w1) = q
if d(q, ?) is undefined. dˆ0(q, e, w1) = dˆ0(q', w1, w1)
if d(q, ?) = q'
dˆ0(q, aw, w1) = dˆ0(q', w, w1)
if d(q, a) = q' dˆ : Q × S * ? Q
dˆ ( q , w ) = dˆ ( q , w , w ) 0
1
We can see that the run function, dˆ, is defined interms of an auxiliary function called dˆ0. The latter takes three arguments: i. the current state, the input word, and a second input word called w1. The second input word is called an accumulator, and it will be used to remember the original input to the run function, but when defining the auxiliary run function we leave this arbitrary.
The definition of the auxiliary run function follows the definition of the run function for DFAs, but in the case where the input word has been exhausted we check to see if the transition function allows the input to be reset to w1, and if it does, then we call dˆ0 on the next state given by d, and the input word is reset to w1. If when the input is exhausted and the transition function does not allow a ?-transition, then we proceed as usual.
Note that the definition of acceptance for a CR-DFA is the same as for DFAs.
We now define an interesting language. Suppose S = {a, b, c, d, ?, ?} is an alphabet. The symbol ? represents a binary operation, and the symbols a, b, c, d, and ? represent inputs to the binary operation ?. The language L is defined by the following:
i. a,b,c,d,? ? L
ii. Foranyei ?S,thewordw=e1?e2?e3?···?en ?L
iii. For any w ? L, any well-balanced parenthesization of w is a member of L
iv. There are no other words in L.
The following are some example words in L:
a
b
c
d
?
(a?b) (a?(b?c)) (a?(b?(c?d))) a?b?c (a?b)?c
So the words of L are all the possible associations of applications of the binary operation ?. Define a CR-DFA in the diagrammatic from used with DFAs that recognizes the language L as defined above. In addition, describe why CR-DFAs are bad in practice.

Related Discussions:- A composable-reset DFA (CR-DFA) is a five-tuple

Finite state automata, Since the signi?cance of the states represented by t...

Since the signi?cance of the states represented by the nodes of these transition graphs is arbitrary, we will allow ourselves to use any ?nite set (such as {A,B,C,D,E, F,G,H} or ev

Equivalence of nfas, It is not hard to see that ε-transitions do not add to...

It is not hard to see that ε-transitions do not add to the accepting power of the model. The underlying idea is that whenever an ID (q, σ  v) directly computes another (p, v) via

Kleene closure, So we have that every language that can be constructed from...

So we have that every language that can be constructed from SL languages using Boolean operations and concatenation (that is, every language in LTO) is recognizable but there are r

Create a general algorithm from a checking algorithm, Claim Under the assum...

Claim Under the assumptions above, if there is an algorithm for checking a problem then there is an algorithm for solving the problem. Before going on, you should think a bit about

Union, Intuitively, closure of SL 2 under intersection is reasonably easy ...

Intuitively, closure of SL 2 under intersection is reasonably easy to see, particularly if one considers the Myhill graphs of the automata. Any path through both graphs will be a

Strictly 2-local languages, The fundamental idea of strictly local language...

The fundamental idea of strictly local languages is that they are speci?ed solely in terms of the blocks of consecutive symbols that occur in a word. We'll start by considering lan

Path function of a nfa, The path function δ : Q × Σ*→ P(Q) is the extension...

The path function δ : Q × Σ*→ P(Q) is the extension of δ to strings: Again, this just says that to ?nd the set of states reachable by a path labeled w from a state q in an

Turing machine, design a turing machine that accepts the language which con...

design a turing machine that accepts the language which consists of even number of zero''s and even number of one''s?

Myhill-nerode theorem, The Myhill-Nerode Theorem provided us with an algori...

The Myhill-Nerode Theorem provided us with an algorithm for minimizing DFAs. Moreover, the DFA the algorithm produces is unique up to isomorphism: every minimal DFA that recognizes

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd