3-d transformation, Computer Graphics

Assignment Help:

3-D Transformation

The capability to represent or display a three-dimensional object is basically to the knowing of the shape of that object. Moreover, the capability to rotate, translate and also project views of such object is also, in various cases, basically to the understanding of its shape. Manipulation, construction and viewing of 3-dimensional graphic images need the utilization of coordinate transformations and 3-dimensional geometric. Within geometric transformation, the coordinate system is set and the desired transformation of the object is finished w.r.t. the coordinate system. During coordinate transformation, the object is fixed and the preferred transformation of the object is complete on the coordinate system itself. Such transformations are formed via composing the essential transformations of translation, rotation and scaling. All of these transformations can be demonstrated as a matrix transformation. It permits more complex transformations to be constructed by utilization of matrix concatenation or multiplication. We can make the complicated objects/pictures, via immediate transformations. In order to demonstrate all these transformations, we require utilizing homogeneous coordinates.

Thus, if P(x,y,z) be any point in 3-dimensional space then in Homogeneous coordinate system, we add a fourth-coordinate to a point. It is in place of (x,y,z), all points can be represented via a Quadruple (x,y,z,H), where H≠0; along with the condition is x1/H1=x2/H2; y1/H1=y2/H2; z1/H1=z2/H2. For two points (x1, y1, z1, H1) = (x2, y2, z2, H2) ; such that H1 ≠ 0, H2 ≠ 0. Hence any point (x,y,z) in Cartesian system can be illustrated by a four-dimensional vector like (x,y,z,1) in HCS. Similarly, if (x,y,z,H) be any point in Homogeneous coordinate system then (x/H,y/H,z/H) be the equivalent point in Cartesian system. Hence, a point in 3-dimensional space (x,y,z) can be demonstrated by a four-dimensional point as: (x',y',z',1)=(x,y,z,1).[T], here [T] is several transformation matrix and (x',y'z',1) is a new coordinate of a specified point (x,y,z,1), so after the transformation.

The completed 4x4 transformation matrix for 3-dimensional homogeneous coordinates as:

2350_3-D Transformation.png

The upper left (3x3) sub matrix generates scaling, reflection, rotation and shearing transformation. The lower left (1x3) sub-matrix generates translation and the upper right (3x1) sub-matrix produces a perspective transformation that we will study in the subsequent section. The final lower right-hand (1x1) sub-matrix generates overall scaling.


Related Discussions:- 3-d transformation

Modal create, morgen wants to sign up for an account on doggobook, the worl...

morgen wants to sign up for an account on doggobook, the world''s thrid - best social network for dog enthusiasts. she enters her email address and a password into the sign-up form

Explain clearly how to view the baseline grid, QUESTION (a) What are th...

QUESTION (a) What are the main purposes of using master pages? (b) How do you select a master page item on a document page? (c) How do you resize a graphics frame and its

Difference, difference between vecgen algoritham and bresenham''s algori

difference between vecgen algoritham and bresenham''s algori

Area subdivision method for hidden surface removal, Q.  Write a short note...

Q.  Write a short note on area subdivision method for hidden surface removal.   Ans. Area Subdivision This technique for hidden- surface removal is essentially an image- spac

What is the theory of gestalt, Question: (a) After having worked for s...

Question: (a) After having worked for several years as a graphic designer you decide to start a company of your own; MediaDesign ltd. The most valuable asset of a company is i

Define refresh rate and refresh buffer, Refresh Rate: refreshing on raster...

Refresh Rate: refreshing on raster - scan displays is carried out at the rate of 60 to 80 frames per second, although some system are designed for higher refresh rates. Sometimes,

Applications for computer animation-physics, Normal 0 false f...

Normal 0 false false false EN-US X-NONE X-NONE

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd