3-d transformation, Computer Graphics

Assignment Help:

3-D Transformation

The capability to represent or display a three-dimensional object is basically to the knowing of the shape of that object. Moreover, the capability to rotate, translate and also project views of such object is also, in various cases, basically to the understanding of its shape. Manipulation, construction and viewing of 3-dimensional graphic images need the utilization of coordinate transformations and 3-dimensional geometric. Within geometric transformation, the coordinate system is set and the desired transformation of the object is finished w.r.t. the coordinate system. During coordinate transformation, the object is fixed and the preferred transformation of the object is complete on the coordinate system itself. Such transformations are formed via composing the essential transformations of translation, rotation and scaling. All of these transformations can be demonstrated as a matrix transformation. It permits more complex transformations to be constructed by utilization of matrix concatenation or multiplication. We can make the complicated objects/pictures, via immediate transformations. In order to demonstrate all these transformations, we require utilizing homogeneous coordinates.

Thus, if P(x,y,z) be any point in 3-dimensional space then in Homogeneous coordinate system, we add a fourth-coordinate to a point. It is in place of (x,y,z), all points can be represented via a Quadruple (x,y,z,H), where H≠0; along with the condition is x1/H1=x2/H2; y1/H1=y2/H2; z1/H1=z2/H2. For two points (x1, y1, z1, H1) = (x2, y2, z2, H2) ; such that H1 ≠ 0, H2 ≠ 0. Hence any point (x,y,z) in Cartesian system can be illustrated by a four-dimensional vector like (x,y,z,1) in HCS. Similarly, if (x,y,z,H) be any point in Homogeneous coordinate system then (x/H,y/H,z/H) be the equivalent point in Cartesian system. Hence, a point in 3-dimensional space (x,y,z) can be demonstrated by a four-dimensional point as: (x',y',z',1)=(x,y,z,1).[T], here [T] is several transformation matrix and (x',y'z',1) is a new coordinate of a specified point (x,y,z,1), so after the transformation.

The completed 4x4 transformation matrix for 3-dimensional homogeneous coordinates as:

2350_3-D Transformation.png

The upper left (3x3) sub matrix generates scaling, reflection, rotation and shearing transformation. The lower left (1x3) sub-matrix generates translation and the upper right (3x1) sub-matrix produces a perspective transformation that we will study in the subsequent section. The final lower right-hand (1x1) sub-matrix generates overall scaling.


Related Discussions:- 3-d transformation

Performing rotation about an axis, Performing rotation about an Axis Fo...

Performing rotation about an Axis For performing rotation about an axis parallel to one of the coordinate axes (say z-axis), you first need to translate the axis (and hence the

Briefly describe what you understand by smoothing, Question: (a) List a...

Question: (a) List and explain different types of lights that can be used in After Effects. (b) How is the density of dots between the boxes in a motion path related to th

Define emissive and non-emissive displays, What do you mean by emissive and...

What do you mean by emissive and non-emissive displays?  The emissive display changes electrical energy into light energy. The plasma panels, thin film electro-luminescent disp

Subdivision of polygon - visible surface detection , Subdivision of polyg...

Subdivision of polygon Test to find out the visibility of a single surface are made through comparing surfaces that as polygons P along regarding a specified screen area A.

Explain shannon -fano algorithm, (a) Differentiate between the following co...

(a) Differentiate between the following compression algorithm: 1. Shannon -Fano Algorithm and 2. Huffman Encoding (b) A statistical encoding algorithm is being considered

Spline curve - modeling and rendering, Spline curve - Modeling and Renderin...

Spline curve - Modeling and Rendering Spline curve is created by using Control points that control the shape of the curve Spline curve is a composite curve formed along with s

Interfacing lcd liquid crystal display, Main Objectives: Interfacing...

Main Objectives: Interfacing LCD to the Micro-controller (PIC18F4520) Programming LCD by using C- language via MPLAB Sending data or command to the LCD Component

Digital painting, Please guide if there is any easy steps tutorial availabl...

Please guide if there is any easy steps tutorial available for digital painting in adobe photoshop.

Scancode, what is mean by scan code

what is mean by scan code

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd