3-d transformation, Computer Graphics

Assignment Help:

3-D Transformation

The capability to represent or display a three-dimensional object is basically to the knowing of the shape of that object. Moreover, the capability to rotate, translate and also project views of such object is also, in various cases, basically to the understanding of its shape. Manipulation, construction and viewing of 3-dimensional graphic images need the utilization of coordinate transformations and 3-dimensional geometric. Within geometric transformation, the coordinate system is set and the desired transformation of the object is finished w.r.t. the coordinate system. During coordinate transformation, the object is fixed and the preferred transformation of the object is complete on the coordinate system itself. Such transformations are formed via composing the essential transformations of translation, rotation and scaling. All of these transformations can be demonstrated as a matrix transformation. It permits more complex transformations to be constructed by utilization of matrix concatenation or multiplication. We can make the complicated objects/pictures, via immediate transformations. In order to demonstrate all these transformations, we require utilizing homogeneous coordinates.

Thus, if P(x,y,z) be any point in 3-dimensional space then in Homogeneous coordinate system, we add a fourth-coordinate to a point. It is in place of (x,y,z), all points can be represented via a Quadruple (x,y,z,H), where H≠0; along with the condition is x1/H1=x2/H2; y1/H1=y2/H2; z1/H1=z2/H2. For two points (x1, y1, z1, H1) = (x2, y2, z2, H2) ; such that H1 ≠ 0, H2 ≠ 0. Hence any point (x,y,z) in Cartesian system can be illustrated by a four-dimensional vector like (x,y,z,1) in HCS. Similarly, if (x,y,z,H) be any point in Homogeneous coordinate system then (x/H,y/H,z/H) be the equivalent point in Cartesian system. Hence, a point in 3-dimensional space (x,y,z) can be demonstrated by a four-dimensional point as: (x',y',z',1)=(x,y,z,1).[T], here [T] is several transformation matrix and (x',y'z',1) is a new coordinate of a specified point (x,y,z,1), so after the transformation.

The completed 4x4 transformation matrix for 3-dimensional homogeneous coordinates as:

2350_3-D Transformation.png

The upper left (3x3) sub matrix generates scaling, reflection, rotation and shearing transformation. The lower left (1x3) sub-matrix generates translation and the upper right (3x1) sub-matrix produces a perspective transformation that we will study in the subsequent section. The final lower right-hand (1x1) sub-matrix generates overall scaling.


Related Discussions:- 3-d transformation

Polygonalization of the surface, Remember in polygonalization of the surfac...

Remember in polygonalization of the surface, following rules must be followed. Any two polygons  (i)  share a common edge,   (ii)  Share a common vertext,  (iii)  Arc disj

What is jpeg, Question 1 What is JPEG? How do you change the quality of a ...

Question 1 What is JPEG? How do you change the quality of a JPEG image? Question 2 What are the advantages and challenges of virtual classroom? Question 3 What do

Image editing tools in multimedia, Image Editing Tools These are specia...

Image Editing Tools These are specializing and influential tools for enhancing and re-touching existing bit-mapped images. Such applications also give several of the features a

What happens while two polygons have similar z value , What happens while t...

What happens while two polygons have similar z value and the z-buffer algorithm is utilized? Solution : z-buffer algorithms, varies colors at a pixel if z(x,y)

Global illumination model -polygon rendering, Global illumination model -po...

Global illumination model -polygon rendering This illumination model adds to the local model the light which is reflected from the other surfaces to the current surface. This

Explain the bresenham line generation algorithm, 1. Explain the Bresenham ...

1. Explain the Bresenham line generation algorithm via digitizing the line with end  points as (15, 5) and also (25,13). Ans. Now we are utilizing the Bresenham line generati

Demerit - phong shading or normal vector interpolation shadi, Demerit - pho...

Demerit - phong shading or normal vector interpolation shading Needs lot of computations to determine intensity at a point, hence increases the cost of shading in any impleme

What are the steps to mapping artwork to an object, Question 1: (a) How...

Question 1: (a) How can you select and manipulate individual objects in a group? (b) How do you resize an object? Explain how you determine the point from which the object r

Art-applications for computer animation, Art: it just like conventional an...

Art: it just like conventional animation, computer animation is additionally a type of art. A multitude of results can be created on a computer than on a piece of paper. An artist

Important points for bresenham line generation algorithm, Important points ...

Important points for Bresenham Line Generation Algorithm Note: Bresenhams algorithm is generalised to lines along with arbitrary slopes with identifying the symmetry

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd