3-d transformation, Computer Graphics

Assignment Help:

3-D Transformation

The capability to represent or display a three-dimensional object is basically to the knowing of the shape of that object. Moreover, the capability to rotate, translate and also project views of such object is also, in various cases, basically to the understanding of its shape. Manipulation, construction and viewing of 3-dimensional graphic images need the utilization of coordinate transformations and 3-dimensional geometric. Within geometric transformation, the coordinate system is set and the desired transformation of the object is finished w.r.t. the coordinate system. During coordinate transformation, the object is fixed and the preferred transformation of the object is complete on the coordinate system itself. Such transformations are formed via composing the essential transformations of translation, rotation and scaling. All of these transformations can be demonstrated as a matrix transformation. It permits more complex transformations to be constructed by utilization of matrix concatenation or multiplication. We can make the complicated objects/pictures, via immediate transformations. In order to demonstrate all these transformations, we require utilizing homogeneous coordinates.

Thus, if P(x,y,z) be any point in 3-dimensional space then in Homogeneous coordinate system, we add a fourth-coordinate to a point. It is in place of (x,y,z), all points can be represented via a Quadruple (x,y,z,H), where H≠0; along with the condition is x1/H1=x2/H2; y1/H1=y2/H2; z1/H1=z2/H2. For two points (x1, y1, z1, H1) = (x2, y2, z2, H2) ; such that H1 ≠ 0, H2 ≠ 0. Hence any point (x,y,z) in Cartesian system can be illustrated by a four-dimensional vector like (x,y,z,1) in HCS. Similarly, if (x,y,z,H) be any point in Homogeneous coordinate system then (x/H,y/H,z/H) be the equivalent point in Cartesian system. Hence, a point in 3-dimensional space (x,y,z) can be demonstrated by a four-dimensional point as: (x',y',z',1)=(x,y,z,1).[T], here [T] is several transformation matrix and (x',y'z',1) is a new coordinate of a specified point (x,y,z,1), so after the transformation.

The completed 4x4 transformation matrix for 3-dimensional homogeneous coordinates as:

2350_3-D Transformation.png

The upper left (3x3) sub matrix generates scaling, reflection, rotation and shearing transformation. The lower left (1x3) sub-matrix generates translation and the upper right (3x1) sub-matrix produces a perspective transformation that we will study in the subsequent section. The final lower right-hand (1x1) sub-matrix generates overall scaling.


Related Discussions:- 3-d transformation

Combination of positive and negative accelerations, Combination of Positive...

Combination of Positive and Negative Accelerations Actually, it is not that a body once decelerated or accelerated will remain so, although the motion may include both speed-up

Medicine-applications for computer animation, Medicine: this is very tough...

Medicine: this is very tough for a doctor to get inside a living human body and to observe what is occurrence. Computer animation once again comes in very helpful. Every particula

Several kinds of dedicated video tele conference devices, There are several...

There are several kinds of dedicated Video Tele Conference devices. Large groups Video Tele Conference are non-portable, large, more expensive devices utilized for large rooms

De casteljeau algorithm - bezier curves, De Casteljeau algorithm: The cont...

De Casteljeau algorithm: The control points P 0 , P 1 , P 2 and P 3 are combined with line segments termed as 'control polygon', even if they are not actually a polygon although

Shearing - 2-d and 3-d transformations, Shearing - 2-D and 3-D transformati...

Shearing - 2-D and 3-D transformations Shearing transformations are utilized for altering the shapes of 2 or 3-D objects. The consequence of a shear transformation seems like

3D transformation, what are the steps involved in 3D transformation

what are the steps involved in 3D transformation

De casteljau algorithm - 2d clipping algorithms, De Casteljau Algorithm ...

De Casteljau Algorithm For computation of Bézier curves an iterative algorithm known as de Casteljau algorithm is used.  The algorithm uses repeated linear interpolation.

Uncompressed and common audio format, Uncompressed / Common Audio Format ...

Uncompressed / Common Audio Format There is one main uncompressed audio format: PCM. It is generally stored like a .wav on Windows. WAV is file format which is flexible and des

Animation, name some of the standard motion in key frames

name some of the standard motion in key frames

Process of objects in raster display and random display, Explain process of...

Explain process of displaying objects in raster display and random display. Draw block diagrams of the architecture of both the display systems.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd