3-d transformation, Computer Graphics

Assignment Help:

3-D Transformation

The capability to represent or display a three-dimensional object is basically to the knowing of the shape of that object. Moreover, the capability to rotate, translate and also project views of such object is also, in various cases, basically to the understanding of its shape. Manipulation, construction and viewing of 3-dimensional graphic images need the utilization of coordinate transformations and 3-dimensional geometric. Within geometric transformation, the coordinate system is set and the desired transformation of the object is finished w.r.t. the coordinate system. During coordinate transformation, the object is fixed and the preferred transformation of the object is complete on the coordinate system itself. Such transformations are formed via composing the essential transformations of translation, rotation and scaling. All of these transformations can be demonstrated as a matrix transformation. It permits more complex transformations to be constructed by utilization of matrix concatenation or multiplication. We can make the complicated objects/pictures, via immediate transformations. In order to demonstrate all these transformations, we require utilizing homogeneous coordinates.

Thus, if P(x,y,z) be any point in 3-dimensional space then in Homogeneous coordinate system, we add a fourth-coordinate to a point. It is in place of (x,y,z), all points can be represented via a Quadruple (x,y,z,H), where H≠0; along with the condition is x1/H1=x2/H2; y1/H1=y2/H2; z1/H1=z2/H2. For two points (x1, y1, z1, H1) = (x2, y2, z2, H2) ; such that H1 ≠ 0, H2 ≠ 0. Hence any point (x,y,z) in Cartesian system can be illustrated by a four-dimensional vector like (x,y,z,1) in HCS. Similarly, if (x,y,z,H) be any point in Homogeneous coordinate system then (x/H,y/H,z/H) be the equivalent point in Cartesian system. Hence, a point in 3-dimensional space (x,y,z) can be demonstrated by a four-dimensional point as: (x',y',z',1)=(x,y,z,1).[T], here [T] is several transformation matrix and (x',y'z',1) is a new coordinate of a specified point (x,y,z,1), so after the transformation.

The completed 4x4 transformation matrix for 3-dimensional homogeneous coordinates as:

2350_3-D Transformation.png

The upper left (3x3) sub matrix generates scaling, reflection, rotation and shearing transformation. The lower left (1x3) sub-matrix generates translation and the upper right (3x1) sub-matrix produces a perspective transformation that we will study in the subsequent section. The final lower right-hand (1x1) sub-matrix generates overall scaling.


Related Discussions:- 3-d transformation

Terms, composite transformation

composite transformation

Multimedia, Multimedia- It is a new aspect of literacy which is being recog...

Multimedia- It is a new aspect of literacy which is being recognized as technology expands the manner people communicate. The principle of literacy increasingly, is a measure of th

Removing polygons hidden through a surrounding polygon, Removing Polygons H...

Removing Polygons Hidden through a Surrounding Polygon: The key to capable visibility calculation lies actually a polygon is not visible whether it is in back of a surrounding

Steps involved in performing image based processing, QUESTION (a) Expla...

QUESTION (a) Explain the steps involved in performing Image based processing. (b) Propose a mask using a 3X3 matrix, which would help in discovering discontinuities, and hen

Windowing transformations - raster graphics and clipping, Windowing Transf...

Windowing Transformations - Raster Graphics and  Clipping From the above section of introduction, we understood the meaning of the viewport and term window that could again be

Characteristics of vector drawings, Characteristics of vector drawings: Ve...

Characteristics of vector drawings: Vector drawings are generally pretty small files as they include only data about the Bezier curves which form the drawing. The EPS-file format

Application of sutherland hodgman polygon clipping, For good understanding ...

For good understanding of the application of the rules specified above see the following figure, where the shaded region demonstrates the clipped polygon. Fi

Objectives of 2-d viewing and clipping, Objectives of 2-D Viewing and Clipp...

Objectives of 2-D Viewing and Clipping After going through this section, you should be capable to: 1. Describe the concept of clipping, 2. Observe how line clipping is p

Cohen sutherland line clippings algorithm, Cohen Sutherland Line Clippings ...

Cohen Sutherland Line Clippings Algorithm The clipping problem is identified by dividing the region surrounding the window area into four segments Up as U, Down as D, Left as

What is a model sheet?, Question 1 Briefly explain the twelve principles o...

Question 1 Briefly explain the twelve principles of animation Question 2 Explain the methods to set-up pre and post-infinity curves Question 3 What is a model sheet? Exp

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd