3-d transformation, Computer Graphics

Assignment Help:

3-D Transformation

The capability to represent or display a three-dimensional object is basically to the knowing of the shape of that object. Moreover, the capability to rotate, translate and also project views of such object is also, in various cases, basically to the understanding of its shape. Manipulation, construction and viewing of 3-dimensional graphic images need the utilization of coordinate transformations and 3-dimensional geometric. Within geometric transformation, the coordinate system is set and the desired transformation of the object is finished w.r.t. the coordinate system. During coordinate transformation, the object is fixed and the preferred transformation of the object is complete on the coordinate system itself. Such transformations are formed via composing the essential transformations of translation, rotation and scaling. All of these transformations can be demonstrated as a matrix transformation. It permits more complex transformations to be constructed by utilization of matrix concatenation or multiplication. We can make the complicated objects/pictures, via immediate transformations. In order to demonstrate all these transformations, we require utilizing homogeneous coordinates.

Thus, if P(x,y,z) be any point in 3-dimensional space then in Homogeneous coordinate system, we add a fourth-coordinate to a point. It is in place of (x,y,z), all points can be represented via a Quadruple (x,y,z,H), where H≠0; along with the condition is x1/H1=x2/H2; y1/H1=y2/H2; z1/H1=z2/H2. For two points (x1, y1, z1, H1) = (x2, y2, z2, H2) ; such that H1 ≠ 0, H2 ≠ 0. Hence any point (x,y,z) in Cartesian system can be illustrated by a four-dimensional vector like (x,y,z,1) in HCS. Similarly, if (x,y,z,H) be any point in Homogeneous coordinate system then (x/H,y/H,z/H) be the equivalent point in Cartesian system. Hence, a point in 3-dimensional space (x,y,z) can be demonstrated by a four-dimensional point as: (x',y',z',1)=(x,y,z,1).[T], here [T] is several transformation matrix and (x',y'z',1) is a new coordinate of a specified point (x,y,z,1), so after the transformation.

The completed 4x4 transformation matrix for 3-dimensional homogeneous coordinates as:

2350_3-D Transformation.png

The upper left (3x3) sub matrix generates scaling, reflection, rotation and shearing transformation. The lower left (1x3) sub-matrix generates translation and the upper right (3x1) sub-matrix produces a perspective transformation that we will study in the subsequent section. The final lower right-hand (1x1) sub-matrix generates overall scaling.


Related Discussions:- 3-d transformation

Scale a sphere cantered on the point (1, Scale a sphere cantered on the poi...

Scale a sphere cantered on the point (1, 2, and 3) with radius 1, so that the new sphere has the same centre with radius 2.    Solution: Translate the sphere so that its centre

Various ways of simulating motion, Various ways of simulating motion:- ...

Various ways of simulating motion:- -        Zero Acceleration (Constant Speed)           -        Non-Zero Accelerations -        Positive accelerations

Briefly explain how you could create the gun barrel effect, Question 1: ...

Question 1: (a) Describe what you understand by Rotoscoping in Graphic effects. Give details how Rotoscoping could be achieved in After Effects CS3. (b) Using one algorithm

Briefly explain the 12 stages in image processing, QUESTION (a) In Autom...

QUESTION (a) In Automatic Contrast Adjustment briefly explain how to stretch an image to its full intensity (b) Write down a mathematical function of a Modified Automatic Con

3-dimentional, expalin 3-dimentional display methods

expalin 3-dimentional display methods

Hardware for computer animation, Hardware For Computer Animation It co...

Hardware For Computer Animation It comes in many shapes, sizes and abilities. Much hardware is specialized to do only specific tasks. Other types of hardware do a variety of t

Finding where the ball hits a segment, You will write a two-dimensional pre...

You will write a two-dimensional precursor of the three-dimensional bouncing ball simulation that is one of your choices for a ?nal project. This involves adding functions to your

Lossy audio formats, Lossy Audio Formats: These are based on sound models ...

Lossy Audio Formats: These are based on sound models which eliminate audio data such humans cannot or can hardly hear, for example: a low volume sound after a large volume sound.

Program to implement procedures or functions, The goal of this assignment i...

The goal of this assignment is to implement procedures/functions using x86 assembly. In addition to implementing procedures/functions, this assignment requires to pass arguments us

Trivial acceptance case of cohen sutherland line clippings, Trivial accepta...

Trivial acceptance case of cohen sutherland line clippings Case 1: it is Trivial acceptance case whether the UDLR bit codes of the end points P, Q of a provided line is 0000

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd