3-d transformation, Computer Graphics

Assignment Help:

3-D Transformation

The capability to represent or display a three-dimensional object is basically to the knowing of the shape of that object. Moreover, the capability to rotate, translate and also project views of such object is also, in various cases, basically to the understanding of its shape. Manipulation, construction and viewing of 3-dimensional graphic images need the utilization of coordinate transformations and 3-dimensional geometric. Within geometric transformation, the coordinate system is set and the desired transformation of the object is finished w.r.t. the coordinate system. During coordinate transformation, the object is fixed and the preferred transformation of the object is complete on the coordinate system itself. Such transformations are formed via composing the essential transformations of translation, rotation and scaling. All of these transformations can be demonstrated as a matrix transformation. It permits more complex transformations to be constructed by utilization of matrix concatenation or multiplication. We can make the complicated objects/pictures, via immediate transformations. In order to demonstrate all these transformations, we require utilizing homogeneous coordinates.

Thus, if P(x,y,z) be any point in 3-dimensional space then in Homogeneous coordinate system, we add a fourth-coordinate to a point. It is in place of (x,y,z), all points can be represented via a Quadruple (x,y,z,H), where H≠0; along with the condition is x1/H1=x2/H2; y1/H1=y2/H2; z1/H1=z2/H2. For two points (x1, y1, z1, H1) = (x2, y2, z2, H2) ; such that H1 ≠ 0, H2 ≠ 0. Hence any point (x,y,z) in Cartesian system can be illustrated by a four-dimensional vector like (x,y,z,1) in HCS. Similarly, if (x,y,z,H) be any point in Homogeneous coordinate system then (x/H,y/H,z/H) be the equivalent point in Cartesian system. Hence, a point in 3-dimensional space (x,y,z) can be demonstrated by a four-dimensional point as: (x',y',z',1)=(x,y,z,1).[T], here [T] is several transformation matrix and (x',y'z',1) is a new coordinate of a specified point (x,y,z,1), so after the transformation.

The completed 4x4 transformation matrix for 3-dimensional homogeneous coordinates as:

2350_3-D Transformation.png

The upper left (3x3) sub matrix generates scaling, reflection, rotation and shearing transformation. The lower left (1x3) sub-matrix generates translation and the upper right (3x1) sub-matrix produces a perspective transformation that we will study in the subsequent section. The final lower right-hand (1x1) sub-matrix generates overall scaling.


Related Discussions:- 3-d transformation

Determine the perspective transformation matrix, Determine the perspective ...

Determine the perspective transformation matrix upon to z = 5 plane, when the center of projection is at origin. Solution. As z = 5 is parallel to z = 0 plane, the normal is s

Interchange file format, IFF: It is Amiga Interchange File Format which is...

IFF: It is Amiga Interchange File Format which is used to transfer documents to and from Commodore Amiga Computers. This format is really flexible and permits images and text to b

Importance of multimedia, Importance of Multimedia: Multimedia will help i...

Importance of Multimedia: Multimedia will help in spreading the information age to millions of teachers/learners. Today Multimedia educational computing is fastest raising markets

2-d viewing and clipping - raster graphics and clipping, 2-D Viewing and C...

2-D Viewing and Clipping - Raster Graphics and  Clipping In the previous two units of this block, we illustrated the basic elements of computer graphics, that is, the hardware

Calculate the gray level value for all the pixels, An 8x8 image f[i,j] has ...

An 8x8 image f[i,j] has gray levels given by the following equation: f [i , j]= ? i-j ? ; i,j=0,1,2,3,4,5,6,7. a. Calculate the gray level value for all the pixels in the 8x8

Relation between polar coordinate and cartesian system, Relation between po...

Relation between polar coordinate system and Cartesian system A frequently utilized non-cartesian system is Polar coordinate system. The subsequent figure A demonstrates a pol

Behavioral animation - computer animation, Behavioral Animation - Computer ...

Behavioral Animation - Computer Animation It used for control the motion of several objects automatically. Objects or "actors" are specified rules about how they respond to th

Character generation, Which is the most usable and frequent method to gener...

Which is the most usable and frequent method to generate a character?

Basic tests - producing polygon surface, Basic Tests - Producing Polygon Su...

Basic Tests - Producing Polygon Surface A few basic tests that must be performed before producing a polygon surface through any graphic package as: 1) All vertexes are list

What is computer graphics, What is Computer Graphics. Computer graphic...

What is Computer Graphics. Computer graphics remains most existing and rapidly growing computer fields. Computer graphics may be explained as a pictorial representation or gra

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd