3-d transformation, Computer Graphics

Assignment Help:

3-D Transformation

The capability to represent or display a three-dimensional object is basically to the knowing of the shape of that object. Moreover, the capability to rotate, translate and also project views of such object is also, in various cases, basically to the understanding of its shape. Manipulation, construction and viewing of 3-dimensional graphic images need the utilization of coordinate transformations and 3-dimensional geometric. Within geometric transformation, the coordinate system is set and the desired transformation of the object is finished w.r.t. the coordinate system. During coordinate transformation, the object is fixed and the preferred transformation of the object is complete on the coordinate system itself. Such transformations are formed via composing the essential transformations of translation, rotation and scaling. All of these transformations can be demonstrated as a matrix transformation. It permits more complex transformations to be constructed by utilization of matrix concatenation or multiplication. We can make the complicated objects/pictures, via immediate transformations. In order to demonstrate all these transformations, we require utilizing homogeneous coordinates.

Thus, if P(x,y,z) be any point in 3-dimensional space then in Homogeneous coordinate system, we add a fourth-coordinate to a point. It is in place of (x,y,z), all points can be represented via a Quadruple (x,y,z,H), where H≠0; along with the condition is x1/H1=x2/H2; y1/H1=y2/H2; z1/H1=z2/H2. For two points (x1, y1, z1, H1) = (x2, y2, z2, H2) ; such that H1 ≠ 0, H2 ≠ 0. Hence any point (x,y,z) in Cartesian system can be illustrated by a four-dimensional vector like (x,y,z,1) in HCS. Similarly, if (x,y,z,H) be any point in Homogeneous coordinate system then (x/H,y/H,z/H) be the equivalent point in Cartesian system. Hence, a point in 3-dimensional space (x,y,z) can be demonstrated by a four-dimensional point as: (x',y',z',1)=(x,y,z,1).[T], here [T] is several transformation matrix and (x',y'z',1) is a new coordinate of a specified point (x,y,z,1), so after the transformation.

The completed 4x4 transformation matrix for 3-dimensional homogeneous coordinates as:

2350_3-D Transformation.png

The upper left (3x3) sub matrix generates scaling, reflection, rotation and shearing transformation. The lower left (1x3) sub-matrix generates translation and the upper right (3x1) sub-matrix produces a perspective transformation that we will study in the subsequent section. The final lower right-hand (1x1) sub-matrix generates overall scaling.


Related Discussions:- 3-d transformation

Interactive 3d computer graphics, Describe interactive model of computer gr...

Describe interactive model of computer graphics and application areas of interactive computer graphics.

Assumptions for area subdivision method, Assumptions for Area Subdivision M...

Assumptions for Area Subdivision Method a) ¾   Plane of projection is z=0 plane b) ¾ Orthographic parallel projections c) ¾   Direction of projection as d= (0,0,-1) d

Polygon surfaces - curves and surfaces, Polygon Surfaces - Curves and Surfa...

Polygon Surfaces - Curves and Surfaces   By Figure 1 and Figure 2 it is clear that it is possible to store description of objects as a set of surface polygons and similar i

Cases for subdivisions of polygon-visible surface detection, Cases for Subd...

Cases for Subdivisions of Polygon No additional subdivisions of a particular area are desired, if one of the subsequent conditions is true as: Case 1: All the polygons ar

3d studio max -softwares for computer animation, 3DStudio Max -Softwares fo...

3DStudio Max -Softwares for computer animation The successor to 3-DStudio 3.0, 3-DStudio Max runs in WindowsNT. This is completely object-oriented, featuring new enhancements a

Explain three dimensional transformations, Explain Three Dimensional Transf...

Explain Three Dimensional Transformations A 3D geometric transformation is utilized extensively in object modelling and rendering. 2D transformations are naturally extended to

PERT , Program of PERT in c language

Program of PERT in c language

Briefly explain how the median filter works, QUESTION 1 (a) Write a run...

QUESTION 1 (a) Write a run method in Image J environment for the following cases Contrast and Brightness Histogram Generation Histogram Equalisation   (b)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd