3-d transformation, Computer Graphics

Assignment Help:

3-D Transformation

The capability to represent or display a three-dimensional object is basically to the knowing of the shape of that object. Moreover, the capability to rotate, translate and also project views of such object is also, in various cases, basically to the understanding of its shape. Manipulation, construction and viewing of 3-dimensional graphic images need the utilization of coordinate transformations and 3-dimensional geometric. Within geometric transformation, the coordinate system is set and the desired transformation of the object is finished w.r.t. the coordinate system. During coordinate transformation, the object is fixed and the preferred transformation of the object is complete on the coordinate system itself. Such transformations are formed via composing the essential transformations of translation, rotation and scaling. All of these transformations can be demonstrated as a matrix transformation. It permits more complex transformations to be constructed by utilization of matrix concatenation or multiplication. We can make the complicated objects/pictures, via immediate transformations. In order to demonstrate all these transformations, we require utilizing homogeneous coordinates.

Thus, if P(x,y,z) be any point in 3-dimensional space then in Homogeneous coordinate system, we add a fourth-coordinate to a point. It is in place of (x,y,z), all points can be represented via a Quadruple (x,y,z,H), where H≠0; along with the condition is x1/H1=x2/H2; y1/H1=y2/H2; z1/H1=z2/H2. For two points (x1, y1, z1, H1) = (x2, y2, z2, H2) ; such that H1 ≠ 0, H2 ≠ 0. Hence any point (x,y,z) in Cartesian system can be illustrated by a four-dimensional vector like (x,y,z,1) in HCS. Similarly, if (x,y,z,H) be any point in Homogeneous coordinate system then (x/H,y/H,z/H) be the equivalent point in Cartesian system. Hence, a point in 3-dimensional space (x,y,z) can be demonstrated by a four-dimensional point as: (x',y',z',1)=(x,y,z,1).[T], here [T] is several transformation matrix and (x',y'z',1) is a new coordinate of a specified point (x,y,z,1), so after the transformation.

The completed 4x4 transformation matrix for 3-dimensional homogeneous coordinates as:

2350_3-D Transformation.png

The upper left (3x3) sub matrix generates scaling, reflection, rotation and shearing transformation. The lower left (1x3) sub-matrix generates translation and the upper right (3x1) sub-matrix produces a perspective transformation that we will study in the subsequent section. The final lower right-hand (1x1) sub-matrix generates overall scaling.


Related Discussions:- 3-d transformation

Exceptional cases - orthographic projection, Exceptional cases - Orthograph...

Exceptional cases - Orthographic Projection 1)   We have an Orthographic projection, if f=0, then cot (β) =0 that is β=90 0 . 2)   β =cot-1 (1)=450 and this Oblique projec

Two kinds of video tele conference systems, There are mostly two kinds of V...

There are mostly two kinds of Video Tele Conference systems: 1) Desktop systems are add-ons to normal PC's, transforming them in Video Tele Conference devices. A range of variou

Scaling, Scaling, shear, reflection and Viewing coordinates 1) Scaling,...

Scaling, shear, reflection and Viewing coordinates 1) Scaling, shear and reflection operations have natural extensions to 3D.    2)  Viewing coordinates are the coordinates

Explain briefly ancillary operations, Problem: a. Explain briefly six A...

Problem: a. Explain briefly six Ancillary Operations? b. When do ancillary operations take place? c. (i) What is flexography? (ii) Provide examples of finished produ

Distinguish between window port and view port, Distinguish between window p...

Distinguish between window port & view port?  A portion of a picture that is to be displayed by a window is called as window port. The display area of the part selected or the f

Panning and zooning, what is zooming and panning in computer graph please e...

what is zooming and panning in computer graph please explan??

Animation, Animation, Video and Digital Movies : These are sequences of bi...

Animation, Video and Digital Movies : These are sequences of bitmapped graphic scenes or frames, quickly played back. But animations can also be made inside the authoring system t

What is scan line algorithm, What is scan line algorithm?  One way to f...

What is scan line algorithm?  One way to fill the polygon is to apply the inside test. I.e. to check whether the pixel is inside the polygon or outside the polygon and then hig

Define the term avatars- animation, Define the term Avatars- Animation ...

Define the term Avatars- Animation Avatars are another instance of animation. These are frequently used to represent people either in 3-D (as used in computer games) and in 2-D

Performing rotation about an axis, Performing rotation about an Axis Fo...

Performing rotation about an Axis For performing rotation about an axis parallel to one of the coordinate axes (say z-axis), you first need to translate the axis (and hence the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd