3-d transformation, Computer Graphics

Assignment Help:

3-D Transformation

The capability to represent or display a three-dimensional object is basically to the knowing of the shape of that object. Moreover, the capability to rotate, translate and also project views of such object is also, in various cases, basically to the understanding of its shape. Manipulation, construction and viewing of 3-dimensional graphic images need the utilization of coordinate transformations and 3-dimensional geometric. Within geometric transformation, the coordinate system is set and the desired transformation of the object is finished w.r.t. the coordinate system. During coordinate transformation, the object is fixed and the preferred transformation of the object is complete on the coordinate system itself. Such transformations are formed via composing the essential transformations of translation, rotation and scaling. All of these transformations can be demonstrated as a matrix transformation. It permits more complex transformations to be constructed by utilization of matrix concatenation or multiplication. We can make the complicated objects/pictures, via immediate transformations. In order to demonstrate all these transformations, we require utilizing homogeneous coordinates.

Thus, if P(x,y,z) be any point in 3-dimensional space then in Homogeneous coordinate system, we add a fourth-coordinate to a point. It is in place of (x,y,z), all points can be represented via a Quadruple (x,y,z,H), where H≠0; along with the condition is x1/H1=x2/H2; y1/H1=y2/H2; z1/H1=z2/H2. For two points (x1, y1, z1, H1) = (x2, y2, z2, H2) ; such that H1 ≠ 0, H2 ≠ 0. Hence any point (x,y,z) in Cartesian system can be illustrated by a four-dimensional vector like (x,y,z,1) in HCS. Similarly, if (x,y,z,H) be any point in Homogeneous coordinate system then (x/H,y/H,z/H) be the equivalent point in Cartesian system. Hence, a point in 3-dimensional space (x,y,z) can be demonstrated by a four-dimensional point as: (x',y',z',1)=(x,y,z,1).[T], here [T] is several transformation matrix and (x',y'z',1) is a new coordinate of a specified point (x,y,z,1), so after the transformation.

The completed 4x4 transformation matrix for 3-dimensional homogeneous coordinates as:

2350_3-D Transformation.png

The upper left (3x3) sub matrix generates scaling, reflection, rotation and shearing transformation. The lower left (1x3) sub-matrix generates translation and the upper right (3x1) sub-matrix produces a perspective transformation that we will study in the subsequent section. The final lower right-hand (1x1) sub-matrix generates overall scaling.


Related Discussions:- 3-d transformation

Three dimensional transformations, Three Dimensional Transformations A ...

Three Dimensional Transformations A 3D geometric transformation is used extensively in object modelling and rendering.2D transformations are naturally extended to 3D situations

Different types of parallel and perspective projection, Q.   Describe diffe...

Q.   Describe different types of parallel and perspective projection used in computer graphics.

Write a c-code for a user to draw a polygon object, Write a C-code for an i...

Write a C-code for an interactive program which allows a user to draw a polygon object in a window and then gives various choices of geometric transformations on the polygon.  Once

Constant intensity shading or flat shading, Constant intensity shading OR F...

Constant intensity shading OR Flat shading  In this technique particular intensity is calculated for each polygon surface that is all points that lie upon the surface of the

Languge, what languge do computers speak

what languge do computers speak

Hypertext/media and human memory, Hypertext/media and Human Memory Huma...

Hypertext/media and Human Memory Humans associate pieces of information along with other information and make complicated knowledge structures. Thus, this is also said as the h

Animation, Animation, Video and Digital Movies : These are sequences of bi...

Animation, Video and Digital Movies : These are sequences of bitmapped graphic scenes or frames, quickly played back. But animations can also be made inside the authoring system t

What will be the resulting rotation matrix, An object has to be rotated abo...

An object has to be rotated about an axis passing through the points (1,0 ,1), (1,3,1) .  What will be the resulting rotation matrix?    Solution: The axis is parallel to y axis

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd