3-d transformation, Computer Graphics

Assignment Help:

3-D Transformation

The capability to represent or display a three-dimensional object is basically to the knowing of the shape of that object. Moreover, the capability to rotate, translate and also project views of such object is also, in various cases, basically to the understanding of its shape. Manipulation, construction and viewing of 3-dimensional graphic images need the utilization of coordinate transformations and 3-dimensional geometric. Within geometric transformation, the coordinate system is set and the desired transformation of the object is finished w.r.t. the coordinate system. During coordinate transformation, the object is fixed and the preferred transformation of the object is complete on the coordinate system itself. Such transformations are formed via composing the essential transformations of translation, rotation and scaling. All of these transformations can be demonstrated as a matrix transformation. It permits more complex transformations to be constructed by utilization of matrix concatenation or multiplication. We can make the complicated objects/pictures, via immediate transformations. In order to demonstrate all these transformations, we require utilizing homogeneous coordinates.

Thus, if P(x,y,z) be any point in 3-dimensional space then in Homogeneous coordinate system, we add a fourth-coordinate to a point. It is in place of (x,y,z), all points can be represented via a Quadruple (x,y,z,H), where H≠0; along with the condition is x1/H1=x2/H2; y1/H1=y2/H2; z1/H1=z2/H2. For two points (x1, y1, z1, H1) = (x2, y2, z2, H2) ; such that H1 ≠ 0, H2 ≠ 0. Hence any point (x,y,z) in Cartesian system can be illustrated by a four-dimensional vector like (x,y,z,1) in HCS. Similarly, if (x,y,z,H) be any point in Homogeneous coordinate system then (x/H,y/H,z/H) be the equivalent point in Cartesian system. Hence, a point in 3-dimensional space (x,y,z) can be demonstrated by a four-dimensional point as: (x',y',z',1)=(x,y,z,1).[T], here [T] is several transformation matrix and (x',y'z',1) is a new coordinate of a specified point (x,y,z,1), so after the transformation.

The completed 4x4 transformation matrix for 3-dimensional homogeneous coordinates as:

2350_3-D Transformation.png

The upper left (3x3) sub matrix generates scaling, reflection, rotation and shearing transformation. The lower left (1x3) sub-matrix generates translation and the upper right (3x1) sub-matrix produces a perspective transformation that we will study in the subsequent section. The final lower right-hand (1x1) sub-matrix generates overall scaling.


Related Discussions:- 3-d transformation

Low level techniques or motion specific, Low Level Techniques or Motion Spe...

Low Level Techniques or Motion Specific These techniques are utilized to control the motion of any graphic element in any animation scene completely. These techniques are also

Important point for transformation for isometric projection, Important Poin...

Important Points about the Transformation for isometric projection Note: We can also verify such Isometric transformation matrix through checking all the foreshortening fact

What is vanishing point and view reference point, What is vanishing point a...

What is vanishing point and view reference point? The perspective projections of any set of parallel lines that are not parallel to the projection plane converge to appoint cal

Please give me ans, Differences between digital differential analyzer and ...

Differences between digital differential analyzer and VECGEN line algorithm?

Other video file formats, Other Video File Formats: There are several the ...

Other Video File Formats: There are several the other formats for storing video in the digital formats. Such formats are usually used for the storage and viewing of video through

Basics of animation - computer animation, Basics of Animation - Computer an...

Basics of Animation - Computer animation Historical and traditional methods for production of animation: As we have studied the transformations linked in computer graphics

Poser - software to generate computer animations, Poser - software to gener...

Poser - software to generate computer animations Poser: Poser through Curious Labs Creates 3-dimentaional complex models which you can view from any angle, distance o

Delta-delta arrangement and in-line arrangement, Delta-Delta Arrangement an...

Delta-Delta Arrangement and In-Line Arrangement There are two types of shadow masks available, delta-delta arrangement and in-line arrangement. The in-line arrangement refers t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd