3-d transformation, Computer Graphics

Assignment Help:

3-D Transformation

The capability to represent or display a three-dimensional object is basically to the knowing of the shape of that object. Moreover, the capability to rotate, translate and also project views of such object is also, in various cases, basically to the understanding of its shape. Manipulation, construction and viewing of 3-dimensional graphic images need the utilization of coordinate transformations and 3-dimensional geometric. Within geometric transformation, the coordinate system is set and the desired transformation of the object is finished w.r.t. the coordinate system. During coordinate transformation, the object is fixed and the preferred transformation of the object is complete on the coordinate system itself. Such transformations are formed via composing the essential transformations of translation, rotation and scaling. All of these transformations can be demonstrated as a matrix transformation. It permits more complex transformations to be constructed by utilization of matrix concatenation or multiplication. We can make the complicated objects/pictures, via immediate transformations. In order to demonstrate all these transformations, we require utilizing homogeneous coordinates.

Thus, if P(x,y,z) be any point in 3-dimensional space then in Homogeneous coordinate system, we add a fourth-coordinate to a point. It is in place of (x,y,z), all points can be represented via a Quadruple (x,y,z,H), where H≠0; along with the condition is x1/H1=x2/H2; y1/H1=y2/H2; z1/H1=z2/H2. For two points (x1, y1, z1, H1) = (x2, y2, z2, H2) ; such that H1 ≠ 0, H2 ≠ 0. Hence any point (x,y,z) in Cartesian system can be illustrated by a four-dimensional vector like (x,y,z,1) in HCS. Similarly, if (x,y,z,H) be any point in Homogeneous coordinate system then (x/H,y/H,z/H) be the equivalent point in Cartesian system. Hence, a point in 3-dimensional space (x,y,z) can be demonstrated by a four-dimensional point as: (x',y',z',1)=(x,y,z,1).[T], here [T] is several transformation matrix and (x',y'z',1) is a new coordinate of a specified point (x,y,z,1), so after the transformation.

The completed 4x4 transformation matrix for 3-dimensional homogeneous coordinates as:

2350_3-D Transformation.png

The upper left (3x3) sub matrix generates scaling, reflection, rotation and shearing transformation. The lower left (1x3) sub-matrix generates translation and the upper right (3x1) sub-matrix produces a perspective transformation that we will study in the subsequent section. The final lower right-hand (1x1) sub-matrix generates overall scaling.


Related Discussions:- 3-d transformation

Physx, what is physx.?

what is physx.?

Explain briefly ancillary operations, Problem: a. Explain briefly six A...

Problem: a. Explain briefly six Ancillary Operations? b. When do ancillary operations take place? c. (i) What is flexography? (ii) Provide examples of finished produ

Dda or digital differential analyzer algorithm, DDA or Digital Differential...

DDA or Digital Differential Analyzer Algorithm - Line generation algorithms From the above discussion we get that a Line drawing is accomplished through calculating intermedi

Macintosh - hardware for computer animation, Macintosh - Hardware for compu...

Macintosh - Hardware for computer animation It was originally designed to be graphic and desktop publishing machines. Macs did not turn into which widely known till recently, a

Write a c-code for a user to draw a polygon object, Write a C-code for an i...

Write a C-code for an interactive program which allows a user to draw a polygon object in a window and then gives various choices of geometric transformations on the polygon.  Once

List of 3-d animation software, List of 3-D Animation Software Here is ...

List of 3-D Animation Software Here is a short list of several 3-D animation software are - Softimage ( Microsoft) -  Alias/Wavefront ( SGI) -  3D studia MAX (Autodesk

Depth-buffer (or z-buffer) method , Depth-buffer (or z-buffer) Method ...

Depth-buffer (or z-buffer) Method  Z-buffer method is a fast and easy technique for specifying visible-surfaces. Z-buffer method is also termed to as the z-buffer method, as

Interpolation spleen and approximation spine, Q.   Give the difference betw...

Q.   Give the difference between interpolation spleen and approximation spine. Also mention the geometric and parametric continuity conditions in these curves. Ans. A spleen s

Important points about the bezier curves, Important points about the bezier...

Important points about the bezier curves - modeling and rendering 1) Generalizing the idea of Bezier curve of degree at n based upon n+1 control point p0,.....pn P(0)= P 0

Illustration, mcqs of illustration in nts test

mcqs of illustration in nts test

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd