3-d coordinate system - three dimensional spaces, Mathematics

Assignment Help:

The 3-D Coordinate System

We will start the chapter off with a quite brief discussion introducing the 3-D coordinate system and the conventions that we will be utilizing.  We will as well take a concise look at how the different coordinate systems can alter the graph of an equation.

 Let us first get some basic notation out of the way.  The 3-D coordinate system is frequently denoted by R3.  Similarly the 2-D coordinate system is frequently denoted by R2 and the 1-D coordinate system is represented by Rn.  As well, as you might have guessed then a general n dimensional coordinate system is frequently denoted by Rn.

 Subsequently, let's take a quick look at the basic coordinate system.

786_3-D Coordinate System - Three dimensional spaces.png

The above is the standard placement of the axes in this class.  It is supposed that only the positive directions are displayed by the axes.  If we require the negative axes for any reason we will put them in as required. 

As well note the various points on this sketch.  The point P is the common point sitting out in 3-D space.  If we begin at P and drop straight down until we arrive a z-coordinate of zero we arrive at the point Q.  We state that Q sits in the xy-plane.  The xy-plane refers to all the points that have a zero z-coordinate.  We can as well start at P and move in the other two directions as displayed to get points in the xz-plane (this is S along with a y-coordinate of zero) and the yz-plane (this is R along with an x-coordinate of zero).   

Jointly, the xy, xz, and yz-planes are occasionally termed as the coordinate planes. 

As well, the point Q is often considered to as the projection of P in the xy-plane.  Similarly, R is the projection of P in the yz-plane and S is the projection of P in the xz-plane. 

Several formulas that you are employed to working with in R2 have natural extensions in R3.


Related Discussions:- 3-d coordinate system - three dimensional spaces

Solid mensuration, what is the importance of solid mensuration?

what is the importance of solid mensuration?

Arc length with parametric equations, Arc Length with Parametric Equations ...

Arc Length with Parametric Equations In the earlier sections we have looked at a couple of Calculus I topics in terms of parametric equations.  We now require to look at a para

Interpretations of derivatives, Interpretations of derivatives. Exampl...

Interpretations of derivatives. Example:   Find out the equation of the tangent line to                                       x 2 + y 2   =9 at the point (2, √5 ) .

What is the marginal product of labor function, Your engineering department...

Your engineering department estimated the following production function. Q = 15L 2 - 0.5L 3 a. What is the marginal product of labor function, MP L ? b. What is the aver

Net Present Value, A business has the opportunity to expand by purchasing ...

A business has the opportunity to expand by purchasing a machine at a cost of £80,000. The machine has an estimated life of 5 years and is projected to generate a cashflow of £20,0

ALgebra, Please quote me a price

Please quote me a price

Stages of multiplication from the beginning, What is our aim when teaching ...

What is our aim when teaching children multiplication? Firstly they should be able to judge which situations they need to multiply in, and the numbers that are to be multiplied sec

The parallelogram, love is a parallelogram where prove that is a rectangle...

love is a parallelogram where prove that is a rectangle

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd