3-d coordinate system - three dimensional spaces, Mathematics

Assignment Help:

The 3-D Coordinate System

We will start the chapter off with a quite brief discussion introducing the 3-D coordinate system and the conventions that we will be utilizing.  We will as well take a concise look at how the different coordinate systems can alter the graph of an equation.

 Let us first get some basic notation out of the way.  The 3-D coordinate system is frequently denoted by R3.  Similarly the 2-D coordinate system is frequently denoted by R2 and the 1-D coordinate system is represented by Rn.  As well, as you might have guessed then a general n dimensional coordinate system is frequently denoted by Rn.

 Subsequently, let's take a quick look at the basic coordinate system.

786_3-D Coordinate System - Three dimensional spaces.png

The above is the standard placement of the axes in this class.  It is supposed that only the positive directions are displayed by the axes.  If we require the negative axes for any reason we will put them in as required. 

As well note the various points on this sketch.  The point P is the common point sitting out in 3-D space.  If we begin at P and drop straight down until we arrive a z-coordinate of zero we arrive at the point Q.  We state that Q sits in the xy-plane.  The xy-plane refers to all the points that have a zero z-coordinate.  We can as well start at P and move in the other two directions as displayed to get points in the xz-plane (this is S along with a y-coordinate of zero) and the yz-plane (this is R along with an x-coordinate of zero).   

Jointly, the xy, xz, and yz-planes are occasionally termed as the coordinate planes. 

As well, the point Q is often considered to as the projection of P in the xy-plane.  Similarly, R is the projection of P in the yz-plane and S is the projection of P in the xz-plane. 

Several formulas that you are employed to working with in R2 have natural extensions in R3.


Related Discussions:- 3-d coordinate system - three dimensional spaces

The prerequisites for multiplication, THE PREREQUISITES FOR MULTIPLICATION ...

THE PREREQUISITES FOR MULTIPLICATION : The word 'multiply', used in ordinary language, bears the meaning 'increase enormously For instance, bacteria multiply in favourable conditi

Adding integers, Do you subtract when you add integers.

Do you subtract when you add integers.

Distinct roots, There actually isn't a whole lot to do throughout this case...

There actually isn't a whole lot to do throughout this case.  We'll find two solutions which will form a basic set of solutions and therefore our general solution will be as,

the height of the tower, A Stone is dropped from the top of the tower and ...

A Stone is dropped from the top of the tower and travel 24.5 m in last second of its journey. the height of the tower is ...?

Determine the value of the unknown side of a right triangle, Determine the ...

Determine the value of the unknown side of a right triangle: The two legs of a right triangle are 5 ft and 12 ft.  How long is the hypotenuse? Now Let the hypotenuse be c ft.

Solve the form x2 - bx + c, The form x2 - bx + c ? This tutorial will ...

The form x2 - bx + c ? This tutorial will help you factor quadratics that look something like this: x 2 -7x + 12 (No leading coefficient; negative middle coefficient; p

Trig identities, What is the exact vale of sin(theta/2) when sintheta=3/5, ...

What is the exact vale of sin(theta/2) when sintheta=3/5, pi/2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd