volumes for solid of revolution, Mathematics

Assignment Help:

 Volumes for Solid of Revolution

Before deriving the formula for it we must probably first describe just what a solid of revolution is. To find a solid of revolution we start out along with a function, y= f(x), in an interval [a,b].

1421_Area between Two Curves 3.png

Then we rotate this curve about a specified axis to find the surface of the solid of revolution.  For reasons of this derivation let's rotate the curve regarding the x-axis. Doing that gives the subsequent three dimensional regions.

864_Area between Two Curves 4.png

We require determining the volume of the interior of such object. To do that we will proceeds much as we did for the area in between two curves case.  We will firstly divide up the interval in n subintervals of width,

Δx = (b -a)/n

Then we will select a point from each subinterval, xi*.

 Here, in the area in between two curves case we approximated the area by using rectangles on every subinterval. For volumes we'll use disks in each subinterval to estimate the area. The area, of the face of each disk is specified by A (xi*) and the volume of each disk is

Vi = A(xi*) Δx

Now here is a sketch of this,

334_Area between Two Curves 5.png

Then the volume of the region can be approximated with,

V ≈  792_Area between Two Curves 6.png     A(xi*) Δx

Then the exact volume is,

V ≈limn→∞    792_Area between Two Curves 6.png    A(xi*) Δx

= ab A(x) dx

Therefore, in this case the volume will be the integral of the cross-sectional area on any x, A(x). Consider as well that, here, the cross-sectional area is a circle and we could go farther and find a formula for this as well. Though the formula above is more common and will work for any method of getting a cross section therefore we will leave this like this is.

In the sections where we truly use this formula we will also consider that there are ways of generating the cross section which will actually provide a cross-sectional area which is a function of y in place of x.  In these cases the formula will be as,

V = cd A(y) dy                                      c < y < d

Here we looked at rotating a curve about the x-axis; though, we could have only as simply rotated the curve about the y-axis. Actually we could rotate the curve about any vertical or horizontal axis and into all of these, case we can utilize one or both of the subsequent formulas.

V = ab A(x) dx                                      V = cd A(y) dy


Related Discussions:- volumes for solid of revolution

Correlation and regression, Correlation and Regression CORRELATION is ...

Correlation and Regression CORRELATION is an important statistical concept which refers to association or interrelationship among variables. The reasons of studying correla

Erin is painting a bathroom what is the area to be painted, Erin is paintin...

Erin is painting a bathroom along with four walls each measuring 8 ft through 5.5 ft. Ignoring the doors or windows, what is the area to be painted? The area of the room is the

Graph all four vectors on similar axis system, The vector a → =(2,4) compu...

The vector a → =(2,4) compute 3a → , ½ a → and -2a → . Graph all four vectors on similar axis system. Solution: Now here are the three scalar Multiplication 3a → = (6,

Which mathematical property did marty use to get similar ans, Marty used th...

Marty used the subsequent mathematical statement to show he could change an expression and still get the similar answer on both sides: 10 × (6 × 5) = (10 × 6) × 5 Which mathematica

Math.., how many sixs are in 60

how many sixs are in 60

Rounding, the number is 605176 the underline digit is 0

the number is 605176 the underline digit is 0

Determine series is convergent or divergent by root test, Find out if the f...

Find out if the following series is convergent or divergent. Solution There really is not very much to these problems another than calculating the limit and then usin

Solve the subsequent proportion, Solve the subsequent proportion: Exa...

Solve the subsequent proportion: Example: Solve the subsequent proportion for x. Solution: 5:x = 4:15 The product of the extremes is (5)(15) = 75. The produ

Relationship between the shortest path distances - tree, 1. a)  Given a dig...

1. a)  Given a digraph G = (V,E), prove that if we add a constant k to the length of every arc coming out from the root node r, the shortest path tree remains the same.  Do this by

Math on a spot, compare: 643,251: 633,512: 633,893. The answer is 633,512.

compare: 643,251: 633,512: 633,893. The answer is 633,512.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd