volumes for solid of revolution, Mathematics

Assignment Help:

 Volumes for Solid of Revolution

Before deriving the formula for it we must probably first describe just what a solid of revolution is. To find a solid of revolution we start out along with a function, y= f(x), in an interval [a,b].

1421_Area between Two Curves 3.png

Then we rotate this curve about a specified axis to find the surface of the solid of revolution.  For reasons of this derivation let's rotate the curve regarding the x-axis. Doing that gives the subsequent three dimensional regions.

864_Area between Two Curves 4.png

We require determining the volume of the interior of such object. To do that we will proceeds much as we did for the area in between two curves case.  We will firstly divide up the interval in n subintervals of width,

Δx = (b -a)/n

Then we will select a point from each subinterval, xi*.

 Here, in the area in between two curves case we approximated the area by using rectangles on every subinterval. For volumes we'll use disks in each subinterval to estimate the area. The area, of the face of each disk is specified by A (xi*) and the volume of each disk is

Vi = A(xi*) Δx

Now here is a sketch of this,

334_Area between Two Curves 5.png

Then the volume of the region can be approximated with,

V ≈  792_Area between Two Curves 6.png     A(xi*) Δx

Then the exact volume is,

V ≈limn→∞    792_Area between Two Curves 6.png    A(xi*) Δx

= ab A(x) dx

Therefore, in this case the volume will be the integral of the cross-sectional area on any x, A(x). Consider as well that, here, the cross-sectional area is a circle and we could go farther and find a formula for this as well. Though the formula above is more common and will work for any method of getting a cross section therefore we will leave this like this is.

In the sections where we truly use this formula we will also consider that there are ways of generating the cross section which will actually provide a cross-sectional area which is a function of y in place of x.  In these cases the formula will be as,

V = cd A(y) dy                                      c < y < d

Here we looked at rotating a curve about the x-axis; though, we could have only as simply rotated the curve about the y-axis. Actually we could rotate the curve about any vertical or horizontal axis and into all of these, case we can utilize one or both of the subsequent formulas.

V = ab A(x) dx                                      V = cd A(y) dy


Related Discussions:- volumes for solid of revolution

Integrals involving roots - integration techniques, Integrals Involving Roo...

Integrals Involving Roots - Integration Techniques In this part we're going to look at an integration method that can be helpful for some integrals with roots in them. We hav

Define points, Define Points, Lines, and Spaces Points, lines, and planes...

Define Points, Lines, and Spaces Points, lines, and planes are known as undefined or primitive terms. These are the most significant and fundamental concepts in the study of geom

Permatuation and combination problem, How may six digit numbers can be made...

How may six digit numbers can be made in which the sum of the digits is even? Ans = 9*10*10*10*10*5

The alternative hypothesis, The alternative hypothesis When formulatin...

The alternative hypothesis When formulating a null hypothesis we also consider the fact that the belief may be found to be untrue thus we will refuse it.  Therefore we formula

Invariant lines, What lines are invariant under the transformation [(103)(0...

What lines are invariant under the transformation [(103)(01-4)(001)]? I do not know where to even begin to solve this. Please help!!

Draw the digraph for the partial order, 1. Consider the relation on A = {1,...

1. Consider the relation on A = {1, 2, 3, 4} with relation matrix: Assume that the rows and columns of the matrix refer to the elements of A in the order 1, 2, 3, 4. (a)

Technical Mathematic, Convert or Reduce Reduce 4,500 micrograms to grams

Convert or Reduce Reduce 4,500 micrograms to grams

How to add fractions involving negative numbers, Q. How to add fractions In...

Q. How to add fractions Involving Negative Numbers? Ans. Adding fractions involving negative numbers, and subtracting them, are only slightly different. But, I'll write do

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd