volumes for solid of revolution, Mathematics

Assignment Help:

 Volumes for Solid of Revolution

Before deriving the formula for it we must probably first describe just what a solid of revolution is. To find a solid of revolution we start out along with a function, y= f(x), in an interval [a,b].

1421_Area between Two Curves 3.png

Then we rotate this curve about a specified axis to find the surface of the solid of revolution.  For reasons of this derivation let's rotate the curve regarding the x-axis. Doing that gives the subsequent three dimensional regions.

864_Area between Two Curves 4.png

We require determining the volume of the interior of such object. To do that we will proceeds much as we did for the area in between two curves case.  We will firstly divide up the interval in n subintervals of width,

Δx = (b -a)/n

Then we will select a point from each subinterval, xi*.

 Here, in the area in between two curves case we approximated the area by using rectangles on every subinterval. For volumes we'll use disks in each subinterval to estimate the area. The area, of the face of each disk is specified by A (xi*) and the volume of each disk is

Vi = A(xi*) Δx

Now here is a sketch of this,

334_Area between Two Curves 5.png

Then the volume of the region can be approximated with,

V ≈  792_Area between Two Curves 6.png     A(xi*) Δx

Then the exact volume is,

V ≈limn→∞    792_Area between Two Curves 6.png    A(xi*) Δx

= ab A(x) dx

Therefore, in this case the volume will be the integral of the cross-sectional area on any x, A(x). Consider as well that, here, the cross-sectional area is a circle and we could go farther and find a formula for this as well. Though the formula above is more common and will work for any method of getting a cross section therefore we will leave this like this is.

In the sections where we truly use this formula we will also consider that there are ways of generating the cross section which will actually provide a cross-sectional area which is a function of y in place of x.  In these cases the formula will be as,

V = cd A(y) dy                                      c < y < d

Here we looked at rotating a curve about the x-axis; though, we could have only as simply rotated the curve about the y-axis. Actually we could rotate the curve about any vertical or horizontal axis and into all of these, case we can utilize one or both of the subsequent formulas.

V = ab A(x) dx                                      V = cd A(y) dy


Related Discussions:- volumes for solid of revolution

Geometry, calculate the area of a trapezoid with height 8cm base 18cm and 9...

calculate the area of a trapezoid with height 8cm base 18cm and 9cm

Evaluate the subsequent inverse trigonometric functions, Evaluate the subse...

Evaluate the subsequent inverse trigonometric functions: Evaluate the subsequent inverse trigonometric functions. arcsin   0.3746 22° arccos  0.3746 69° arctan  0.383

Rounding decimals, i need help rounding decimals to the nearest 100th and t...

i need help rounding decimals to the nearest 100th and tenth

What is dividing fractions, What is Dividing Fractions? If you want to ...

What is Dividing Fractions? If you want to divide two fractions, you invert the second fraction (that is, turn it upside-down) and change the division sign to a multiplication

Definition of a function, A function is a relation for which each of the va...

A function is a relation for which each of the value from the set the first components of the ordered pairs is related with exactly one value from the set of second components of t

Shoppers'' stop, How should shoppers''stop develop its demand forecasts?

How should shoppers''stop develop its demand forecasts?

Surface area with polar coordinates, Surface Area with Polar Coordinates ...

Surface Area with Polar Coordinates We will be searching for at surface area in polar coordinates in this part.  Note though that all we're going to do is illustrate the formu

Operation research, advantages of vogel''s approximation method over north ...

advantages of vogel''s approximation method over north west corner method

Differential equations, Find the normalized differential equation which has...

Find the normalized differential equation which has {x, xex} as its fundamental set

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd