rules for solving linear in-equations - linear algebra, Mathematics

Assignment Help:

Explain what are the Rules for solving linear in-equations?


Related Discussions:- rules for solving linear in-equations - linear algebra

Volumes of solids of revolution -method of cylinders, Volumes of Solids of ...

Volumes of Solids of Revolution / Method of Cylinders In the previous section we started looking at determine volumes of solids of revolution.  In this section we took cross se

Plot your data on a scatter plot, Devise data that link a certain relations...

Devise data that link a certain relationship OF YOUR CHOOSING between two variables. Write a rationale stating why you chose this particular data and what you are planning to STAT

Inverse functions, We have seen that if y is a function of x, then fo...

We have seen that if y is a function of x, then for each given value of x, we can determine uniquely the value of y as per the functional relationship. For some f

Optimization, Optimization is required in situations that frequentl...

Optimization is required in situations that frequently arise in finance and other areas. Organizations would like to maximize their profits or minimize thei

Algebra, how do you solve quadratic equations by factoring?

how do you solve quadratic equations by factoring?

Direction field for the differential equation, We require to check the deri...

We require to check the derivative thus let's use v = 60. Plugging it in (2) provides the slope of the tangent line as -1.96, or negative. Thus, for all values of v > 50 we will ha

Jacob

2/12/2013 2:47:29 AM

These are the rules for solving linear in-equations.

Suppose M, M1, N, N1 and P are expressions such may or may not include variables after that the corresponding rules for solving in-equations will be as:

Rule 1: Addition rule

            If M > N and M1> N

So M + P > N + P and

M1 + P >N1+ P

Rule 2: Subtraction Rule

            If M < N and M1 ≥N1

So M - P < N - P and

M1 - P ≥N1- P

Rule 3: Multiplication rule

If M ≥N and M1 > N1 and P≠ 0

So MP ≥NP; M1P > N1P

M(-P) ≤ N(-P) and M1(-P)  < N1(-P)

Rule 4: Division

If M > N and M1< N1 and  P≠ 0

So M/P > N/P:  M1/P < N1/P

M/(-P) < N/(-P) : and M1/(-P) > N1/(-P)

Rule 5: Inversion Rule

If M/P ≤ N/Q where P, Q ≠ 0

M1/P > N1/Q

So P/M ≥ Q/N and P/M1 < Q/N1

Note: The rules for solving equations are the similar as those for solving equations along with one exception; whereas both sides of an equation is divided or multiplied by a negative number, the inequality symbol should be reversed see rule 3 & Rule 4 above.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd