rules for solving linear in-equations - linear algebra, Mathematics

Assignment Help:

Explain what are the Rules for solving linear in-equations?


Related Discussions:- rules for solving linear in-equations - linear algebra

Prove that bd/cd = bf/ce, In the given figure, ∠AEF=∠AFE and E is the mid-p...

In the given figure, ∠AEF=∠AFE and E is the mid-point of CA. Prove that BD/CD = BF/CE Ans:    Draw CG ¦DF In ΔBDF CG ¦ DF ∴ BD/CD = BF/GF     .............(1)

Find the radius of the inner circle, The area enclosed between two concentr...

The area enclosed between two concentric circles is 770cm 2 . If the radius of the outer circle is 21cm, find the radius of the inner circle. (Ans :14cm) Ans: Π R 2 - Π r 2 =

Differentiate inside function in chain rule, Differentiate following. f ...

Differentiate following. f ( x ) = sin (3x 2   + x ) Solution It looks as the outside function is the sine & the inside function is 3x 2 +x. The derivative is then.

Algebra, solve for y 3x+4y=7

solve for y 3x+4y=7

Generate a 30-ounce solution which was 28% acid, A chemist mixed a solution...

A chemist mixed a solution which was 34% acid with another solution that was 18% acid to generate a 30-ounce solution which was 28% acid. How much of the 34% acid solution did he u

Marketing question, If a country with a struggling economy is losing the ba...

If a country with a struggling economy is losing the battle of the marketplace, should the affected government adjust its trade barriers to tilt the economic advantage of its domes

Produce the individual answers and the insights in maths, It is difficult t...

It is difficult to produce the individual answers and the insights that they were providing. But, let's look at some broad patterns that we found, which are similar to those that o

Limits-of-sum, limit 0 to 2(3x^2+2) Solution) integrate 3x^2 to x^3 and...

limit 0 to 2(3x^2+2) Solution) integrate 3x^2 to x^3 and 2 to 2x and apply the limit from 0 to 2 answer is 12.

Jacob

2/12/2013 2:47:29 AM

These are the rules for solving linear in-equations.

Suppose M, M1, N, N1 and P are expressions such may or may not include variables after that the corresponding rules for solving in-equations will be as:

Rule 1: Addition rule

            If M > N and M1> N

So M + P > N + P and

M1 + P >N1+ P

Rule 2: Subtraction Rule

            If M < N and M1 ≥N1

So M - P < N - P and

M1 - P ≥N1- P

Rule 3: Multiplication rule

If M ≥N and M1 > N1 and P≠ 0

So MP ≥NP; M1P > N1P

M(-P) ≤ N(-P) and M1(-P)  < N1(-P)

Rule 4: Division

If M > N and M1< N1 and  P≠ 0

So M/P > N/P:  M1/P < N1/P

M/(-P) < N/(-P) : and M1/(-P) > N1/(-P)

Rule 5: Inversion Rule

If M/P ≤ N/Q where P, Q ≠ 0

M1/P > N1/Q

So P/M ≥ Q/N and P/M1 < Q/N1

Note: The rules for solving equations are the similar as those for solving equations along with one exception; whereas both sides of an equation is divided or multiplied by a negative number, the inequality symbol should be reversed see rule 3 & Rule 4 above.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd