rules for solving linear in-equations - linear algebra, Mathematics

Assignment Help:

Explain what are the Rules for solving linear in-equations?


Related Discussions:- rules for solving linear in-equations - linear algebra

Zero-day attack, What is Zero-Day Attack? Explain Zero-Day Attack

What is Zero-Day Attack? Explain Zero-Day Attack

Discrete mathematics for computing, Everything stored on a computer can be ...

Everything stored on a computer can be represented as a string of bits. However, different types of data (for example, characters and numbers) may be represented by the same strin

Consumer behaviour, what is consumer behaviour according to accounting

what is consumer behaviour according to accounting

Cenamatic, a tire placed on a balancing machine in a service station starts...

a tire placed on a balancing machine in a service station starts from rest an d turns through 4.7 revolutions in 1.2 seconds before reaching its final angular speed Calculate its a

One tailed test, One Tailed Test It is a test where the alternative hy...

One Tailed Test It is a test where the alternative hypothesis (H 1 :) is only concerned along with one of the tails of the distribution for illustration, to test a business co

Mathematics is all around us-mathematics- in our lives, Mathematics Is All ...

Mathematics Is All Around Us :  What is the first thing you do when you get up? Make yourself a nice cup of tea or coffee? If so, then you're using mathematics! Do you agree? Cons

Jacob

2/12/2013 2:47:29 AM

These are the rules for solving linear in-equations.

Suppose M, M1, N, N1 and P are expressions such may or may not include variables after that the corresponding rules for solving in-equations will be as:

Rule 1: Addition rule

            If M > N and M1> N

So M + P > N + P and

M1 + P >N1+ P

Rule 2: Subtraction Rule

            If M < N and M1 ≥N1

So M - P < N - P and

M1 - P ≥N1- P

Rule 3: Multiplication rule

If M ≥N and M1 > N1 and P≠ 0

So MP ≥NP; M1P > N1P

M(-P) ≤ N(-P) and M1(-P)  < N1(-P)

Rule 4: Division

If M > N and M1< N1 and  P≠ 0

So M/P > N/P:  M1/P < N1/P

M/(-P) < N/(-P) : and M1/(-P) > N1/(-P)

Rule 5: Inversion Rule

If M/P ≤ N/Q where P, Q ≠ 0

M1/P > N1/Q

So P/M ≥ Q/N and P/M1 < Q/N1

Note: The rules for solving equations are the similar as those for solving equations along with one exception; whereas both sides of an equation is divided or multiplied by a negative number, the inequality symbol should be reversed see rule 3 & Rule 4 above.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd