Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
A motile cell is placed at the point (x0, y0) on a square shaped dish filled with a "nutrient bath". The concentration of nutrient at any point (x, y) in the dish is given by
N(x, y) = 10 - 2x2 - 4y2.
Cells are typically known to move, in a continuous fashion, in the direction of maximum increase of this nutrient. Furthermore, it is observed that each cell moves with a velocity proportional to the gradient vector at each point (where k is the constant of proportionality).
(a) Show that the parametric equations that represent the motion of the cell over time are given by
x(t) = x0e-4kt, y(t) = y0e-8kt.
[Hint: you may need to look up a method for solving first order ordinary differential equations, known as "separation of variables".]
g^2-6g-55/g
how to find the zero of an equation
a=[25] 43
.1.Write your birth date or the birth date of someone in your family as mm/dd/yy. (Example: March 13, 1981 is written 3/13/81, and November 7, 1967 is written 11/7/67). ?Now le
32+3e=
We will begin with inequalities that only have a single inequality in them. The thing that we've got to keep in mind here is that we're asking to find out all the values of the
how do you do proofs?
point a
Solve the system y = -x + 7 and y = -0.5(x - 3)^2 + 8
y=mx+b for x
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd