introduction on physiological pharmacokinetics, Chemical Engineering

Assignment Help:

Question : Give a basic introduction on PHYSIOLOGICAL PHARMACOKINETICS?

Answer: The history and bases of physiological pharmacokinetics will be briefly reviewed, pointing out some misconceptions, e.g. that membrane transport cannot be incorporated into these models and only the flow-limited case can be handled. Several recent literature reviews will be given for those wanting further details on the modeling and/or specific drugs. This will be followed by a brief description of a few examples, and the paper will conclude with my views of the most useful future research in the area.

The basic idea of physiological pharmacokinetics was to extend pharmacokinetic modeling so that quantitative aspects of other biological areas can be incorporated. For example, this includes what is known about physiological differences and similarities between species, membrane biophysics, biochemical kinetics, and others to be illustrated later. The approach will be to focus the models on anatomically real local tissue regions, including their blood flow, binding and transport characteristics. Certain aspects are similar to the compartmental modeling methods of mathematical biology, see, e.g. Riggs (1970) or Resigno and Segre (1966)---or of what will be termed "classical pharmacokinetics' which is primarily concerned with the prediction of blood levels for various dosage regimens--see Gibaldi and Perrier (1982) for a comprehensive treatment.

Often, however, these compartments have been rather abstract mathematical constructs, whose number and properties were only able to be ascertained by curve-fitting of experimental blood sample data. Useful insights into the quantitative operation of the body were obtained, although specific organ levels were usually not considered. However, physiological pharmacokinetics attempts to also predict the various organ and tissue levels, even extra- vs intra-cellular concentrations.

This concept of utilization of known anatomical and physiological functions as a basis for pharmacokinetic models was earlier proposed by Teorell (1937). This remarkable work was not able to be fully utilized, however, because of the lack of reasonable computing capabilities. When the latter became feasible, the number of differential equations that needed to be solved in comprehensive models was not of crucial importance, and multicompartment models based on known physiology were formulated by Bischoff and Brown (1966). The basis was to use a compartment as an actual local tissue region, as proposed by Bellman et al. (1960).

There are several specific reasons for pursuing this approach. One is the scientific intellectual satisfaction of having quantitative predictive models based on underlying knowledge, rather than the more empirical, curvefitting approaches often used. The latter are always needed to some extent, of course, but should hopefully be minimized. Another important purpose is to aid in the constant problems of interpreting animal experiments in drug screening, dosage regimen formulation, and similar matters. In quantitative terms this can be called 'scaling' the results from one species to another, and ultimately to man, as described by Dedrick (1973).

Both of these results should ultimately result in more efficient experimentation, since the aspects that can be predicted a priori can be done by model, allowing the investigator to focus more specifically on the truly unknown areas. A feature that has both research and practical importance is that the model results are mostly concerned with organ concentrations of drug; this appears to be of increasing interest both for clinical application and also will provide a much clearer basis for studying pharmacodynamics (drug effects) for agents with known sites of action.

The philosophical basis of the present approach resides in chemical engineering modeling and design, where several of the problems of combined flow, diffusion, and chemical reactions are similar to the present problem--see Himmelblau and Bischoff (1968).


Related Discussions:- introduction on physiological pharmacokinetics

Explain proximity printing, Proximity Printing The proximity exposure m...

Proximity Printing The proximity exposure method is same to contact printing except that a small gap, 10 to 25 microns wide, is maintained among the wafer and the mask during e

#Healthcare Statistics and Research, AskAs your final task (Key Assignment)...

AskAs your final task (Key Assignment), you will choose a topic in health care (e.g. cardiovascular issues, obesity, or cancer) and analyze it. Then, integrate all of the steps and

Process engineering, 1. Select a process variable (pressure / temperat...

1. Select a process variable (pressure / temperature / level / flow) and conduct a literature survey to determine recent developments in process instrumentation field. Ide

Hot worked and cold worked products differ, In what manner hot worked and c...

In what manner hot worked and cold worked products differ? Hot working of a metal is carried out above its re-crystallization temperature. In this case the metal is not strain

Hazop and hazan , write hazop study to dethanizer column and brief hazan ...

write hazop study to dethanizer column and brief hazan write brief hazan for shell and tub will send PID for both if you agree do this

Heat transfer, A copper pipe carrying steam at 1 atm and 100 °C has interna...

A copper pipe carrying steam at 1 atm and 100 °C has internal and external radii of 20 and 25 mm, respectively, and thermal conductivity 350 W/m K. With the inside wall at 100 °C a

.electronic configuration , #question.Q1 What is wrong with each of the fol...

#question.Q1 What is wrong with each of the following attempts to write an electron configuration? Justify your answer with suitable explanation. (a) 1s22s3 (b) 1s22s22p23s2 (c) 1s

Strength of materials, A double riveted double cover butt joint is used for...

A double riveted double cover butt joint is used for connecting plates 1.2 cm thick. The diameter of the rivets is 2.2 cm. The permissible stresses in tension - 100 N/mm2 The per

Sds page, why only size influence the movement of protein in sds page

why only size influence the movement of protein in sds page

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd