Whats the relation for the training data set

Assignment Help Computer Engineering
Reference no: EM131474844

Data Mining - Using WEKA for Classification

Step 1: Understanding File Format

Before we start using Weka, let's spend a few minutes on understanding the file format for the input data. In notepad or another text editor, open file ‘sunburn.arff'. The file is in the attribute-relation file format (ARFF format). This is one of the file formats that Weka allows for the input file. Weka can also take the other file formats, for example the csv format. In the arff file, lines beginning with a % sign are comments. Following the comments at the beginning of the file are the name of the relation (‘sunburn') and a block defining the attributes (‘hair', ‘height', ‘weight', ‘lotion', ‘burned'). Nominal attributes are followed by the set of values they cantake on, enclosed in curly braces. Numeric values are followed by the keywordnumeric. There are two further attribute types, string and date.

Although the problem is to predict the class value ‘burned' from the values of the other attributes, the class attribute is not distinguished in any way in the data file. The ARFF format merely gives a dataset; it does not specify which of the attributes is the one that is supposed to be predicted. This means that the same file can be used for investigating how well each attribute can be predicted from the others, or to find association rules, or for clustering.

Following the attribute definitions is an @data line that signals thestart of the instances in the dataset. Instances are written one per line,with values for each attribute in turn, separated by commas. If a valueis missing it is represented by a single question mark.

Step 2: Exploring Training Data

Launch Weka by clicking on: RunWeka.bat

Select ‘Explorer' from the list of Applications.

Select the ‘Preprocess' tab and click on ‘Open File'. Choose the file ‘sunburn.arff' which contains the training data set.

Once the file is open, spend some time exploring the training data set. Weka gives a summary of the relation in the dataset and shows a list of attributes in the relation. An attribute can be selected from the attribute list. Once the attribute is selected, a summary of the attribute is displayed, which includes the list of attribute values (labels) and their counts in the dataset. Finally, the class attribute can be selected and the class distributions for the different attribute values are visualized.

Q1. What's the relation for the training data set? How many instances in the data set? How many attributes are in the relation?

Q2. How many distinct values for attribute "weight"? What are the counts for these attribute values? If you select attribute "burned" as the class attribute, what are the class distributions for the distinct values of attribute "weight"? If you select attribute "height" as the class attribute, what are the class distributions for the distinct values of attribute "hair"?

Step 3: Exploring Classifiers and Decision Trees

Select the ‘Classify' tab and make sure that "J48" is chosen from the classifier list and "Use training set" is clicked as the test option. Note that attribute "burned" is chosen by default as the class attribute but the class attribute can be changed if needed.

Click ‘Start' will create a classification model/classifier from the training dataset. The classifier is listed in the Result list while the details about the classifier are displayed in the ‘Classifier output' window.

Right click on ‘trees J48' in the ‘Result List' and select ‘Visualise Tree'. This will create the "Tree View" window.

A decision tree representation of the classifier will be displayed. Now spend some time examining the decision tree. On each of the leaf nodes there is a class label and two numbers. For instance, the leaf node on the most right of the tree is "burned (9.0/2.0)". This means that 9 instances in the training dataset reach that node, of which 2 are classified incorrectly. As you can see that there are 16 instances in total across all the leaf nodes.

The displayed decision tree is learned using an implementation (J48 in this case) of the C4.5 classification algorithm. This algorithm uses entropy as the impurity function for selecting the splitting attribute. We have yet to cover the algorithm. However, we have learned another impurity function, Gini index/impurity. Can you generate a decision tree using the Hunt's algorithm along with the Gini index as the impurity function?

Q3. Generate the optimal decision tree by hand using the Hunt's algorithm along with the Gini index.

You can then compare the decision tree generated by the C4.5 algorithm with the one generated by the Hunt's algorithm.

Q4. Are these two decision trees the same?

Step 4: Examining Classifier Output

The classifier output window shows the full output. At the beginning, the Run information provides a summary of the classifier, the training data set, and the test option. Then comes the classifier model, in which a pruned decision tree in textual form is shown. On the tree, the first split is on attribute "lotion", and then, at the second level, the split is on attribute "hair". In the tree structure, a colon introduces the class label that has been assigned to a particular leaf node, followed by the number of instances that reach that node. If there were incorrectly classified instances, their number would appear, too.

The next part of the output gives a summary of the evaluation on the dataset chosen as the test option. In this case, the evaluation results are obtained using the training set.

Now you can have a look at the evaluation results.

Q5. What are the accuracy and error rates of the evaluation? How do you calculate each of these rates?

Next comes the Detailed Accuracy by Class. Here we have a table that contains TP, FP, Precision, Recall, F-Measure etc.

Q6. What are the TP, FP, Precision, Recall and F-Measure for the "burned" class? What does each of them measure? How are these metrics calculated?

Finally comes the Confusion Matrix.

Q7. How to interpret the Confusion Matrix? What does each of the four cells in the table represent?

Step 5: Using Cross-validation and examining the classification results

You can easily run J48 again with a different evaluation method. Select the "cross-validation" test option with 10 folds as default and click Start again. The classifier output is quickly replaced to show how well the learned model performs on the cross-validation. As you can see, 25% of the instances (4 out of 16) have been misclassified in the cross-validation. This indicates that the results obtained from the training set(12.5% of the instances (2 out of 16)) earlier are optimistic compared with what might be obtained from an independent test set from the same source.

Q8. How are the figures under the Detailed Accuracy By Class (e.g., TP, FP, Precision, Recall and F-Measure) compared with the ones obtained on the training set?

Q9. Have you observed any changes to the Confusion Matrix? If so what are the changes?

Step 6:

In notepad or another text editor, open file ‘sunburn2.arff'.

Add an additional attribute ‘shade' to the list of attributes:

@ATTRIBUTE 'shade' {yes, no}

The values for ‘shade' should be listed at the start of each instance. For instance, the first instance:
blonde, average,light, no, burned

becomes:
no,blonde, average,light, no, burned

Values (in order, top to bottom) for each instance are as follows:

no, no, no, no, no, no, no, no, no, no, no, yes, yes, no, no, no

Accordingly, update each instance in the file ‘sunburn2.arff' and then save the file.

In WEKA Explorer click the ‘Preprocess' tab and then click ‘Open File'. Select the new file ‘sunburn2.arff'.

Step 7:

Repeat Step3and use J48 to create a new decision tree with this file.

Q10. Does the classification accuracy increase or decrease for this new file?

Q11. Does the J48 decision tree change, if so in what way?

Step 8:

In WEKA Explorer stay in the ‘Classify' tab. Select the ‘Supplied Test set' radio button and click the ‘Set' button, followed by the ‘Open file' button. Choose and open the file ‘sunburn2TEST.arff' and click ‘Close'.

Click the ‘More Options' button and ensure there is a tick beside ‘Output predications' then press ‘OK'.

Right click on ‘tree J48' and select ‘Re-evaluate model on current test set'.

The prediction results will appear in the ‘Classifier output' under the heading ‘Predictions on test set'.

Compare the predictions to the instances in the file ‘sunburn2TEST.arff'.

Q12. Are the predictions reasonable? Are the predictions as you would expect?

Attachment:- Practical1.rar

Reference no: EM131474844

Questions Cloud

Estimate the computation time for the program : Estimate the computation time for the program in the above problem assuming the following time characteristics.
Competitor advantages take place : How is game theory applied when competitor advantages take place? In other words, how do you implement game theory into the equation of competition?
General category of healthcare service : Identify a general category of healthcare service that would have a demand elasticity of under 1.0.
The carolina cougars case study : The Carolina Cougars is a major league baseball expansion team beginning its third year of operation.
Whats the relation for the training data set : What's the relation for the training data set and How many instances in the data set? How many attributes are in the relation?
How do the servers and clients interact : Describe the characteristics of any commercial distributed system you have access to. What services are provided? How do the servers and clients interact?
What kind of absolute truths require the existence of god : What kind of absolute truths require the existence of God? Briefly define general and special revelation. Define exclusivism and pluralism.
Someone like an overweight friend of yours to exercise : How does a campaign get someone like an overweight friend of yours to exercise?
What are the functions of an internet router : Satellite communications channels are used to form computer networks. What are the main drawbacks of this interconnection scheme?

Reviews

Write a Review

Computer Engineering Questions & Answers

  Mathematics in computing

Binary search tree, and postorder and preorder traversal Determine the shortest path in Graph

  Ict governance

ICT is defined as the term of Information and communication technologies, it is diverse set of technical tools and resources used by the government agencies to communicate and produce, circulate, store, and manage all information.

  Implementation of memory management

Assignment covers the following eight topics and explore the implementation of memory management, processes and threads.

  Realize business and organizational data storage

Realize business and organizational data storage and fast access times are much more important than they have ever been. Compare and contrast magnetic tapes, magnetic disks, optical discs

  What is the protocol overhead

What are the advantages of using a compiled language over an interpreted one? Under what circumstances would you select to use an interpreted language?

  Implementation of memory management

Paper describes about memory management. How memory is used in executing programs and its critical support for applications.

  Define open and closed loop control systems

Define open and closed loop cotrol systems.Explain difference between time varying and time invariant control system wth suitable example.

  Prepare a proposal to deploy windows server

Prepare a proposal to deploy Windows Server onto an existing network based on the provided scenario.

  Security policy document project

Analyze security requirements and develop a security policy

  Write a procedure that produces independent stack objects

Write a procedure (make-stack) that produces independent stack objects, using a message-passing style, e.g.

  Define a suitable functional unit

Define a suitable functional unit for a comparative study between two different types of paint.

  Calculate yield to maturity and bond prices

Calculate yield to maturity (YTM) and bond prices

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd