What is the expected number of toyotas

Assignment Help Mathematics
Reference no: EM131154414

Problem 1

Customers arrive at Jackie's Jelly Bean Joint according to a Poisson process at the rate of 1 customer every 3 minutes where {X(t); t ≥ 0} represents the number of arrivals by time t. Jackie's opens each day at 8 AM. (Please convert all times to hours)

(a) The interarrival times are distributed as with ______mean___
(b) The expected time of the arrival of the 12th customer is____
(c) The probability that one customer arrives before 9:00AM is____
(d) Given that 54 customers arrived from 8:00 AM to 11:00 AM, the expected number of arrivals before noon is_____
(e) The distribution of X(t) is____
(f) The distribution of the number of arrivals that occur between 3PM and 4:30PM is____
(g) The probability that 1 or more arrivals occur before 8:06AM is______
Note, to answer what a distribution is, you need to specify the name of the distribution and the value(s) of the parameter(s) of the distribution.

Problem 2

An athletic ticket office has two ticket agents answering incoming phone calls for ticket reser- vations. (Each agent has its own phone.) In addition, one caller can be put on "hold" until one of the agents is available to take the call. If both agent phones and the hold line are all busy, an arriving call gets a busy signal, and it is assumed that business is lost. The arriving calls occur according to a Poisson process with rate 12 calls/hour. Call lengths are exponentially distributed with average 4 minutes in length. Convert all rates to hourly rates.
(a) Find the long run probability that a caller gets an agent immediately?
(b) Find the long run probability that a caller is put on hold?
(c) Find the long run proportion of business that is lost.

Problem 3

Arrivals at a JiffyLube follow a Poisson process with rate 10/hour. Service time is exponentially distributed with mean 15 minutes per customer. There are 2 servers available. Since there is a competitor across the street, only 80% of arriving customers stay for service if they find one car WAITING in queue for service; only 60% stay if they find two cars waiting in queue for service; only 40% stay if they find three cars waiting in queue for service; none stay for service if they find four cars waiting in queue for service. Let X(t) represent the number of cars in the system at time. Convert all rates to hourly rates.

(a) What is the probability that an arriving customer will be served immediately?
(b) What is the long run expected number of cars in the system?
(c) What is the average amount of time a customer spends at the system?
(d) What is the arrival rate of customers INTO Jiffy Lube?

Problem 4

Cars pass a point on the highway according to a Poisson process at a rate of one car every two minutes. 20% of the cars are Toyotas and 10% are Hondas.
(a) What is the probability that at least one Toyota passes in an hour?
(b) Given that 10 Hondas have passed in 2 hours, what is the expected number of Toyotas to have passed in that time?
(c) Given that 60 cars pass in an hour, what is the probability that exactly 40 of them were neither Toyotas nor Hondas.

Problem 5

Players and spectators enter a ballpark according to independent Poisson processes having respective rates 5 and 20 per hour. Starting at an arbitrary time, compute the probability that at least 3 players arrive before 4 spectators.

Problem 6

Consider the M/M/6 queue with arrival rate λ, and service rate at each server µ. You arrive at this system and find 12 customers already in the system. What is the expected length of time until you leave the system?

Reference no: EM131154414

Questions Cloud

Compute the source current : A 230-V, single-phase, 60-Hz source supplies two loads in parallel. One draws 10 kVA at a lagging power factor of 0.80 and the other draws 6 kW at a lagging power factor of 0.90. Compute the source current.
Importance of each of the environmental impacts described : Identify and comment on the importance of each of the environmental impacts described in the following passage:-"The Swedish company IKEA, the world's largest furniture and home furnishings retailer.
What is the risk of an earthquake or tsunami in your area : What is the risk of an earthquake, volcano, or tsunami in your area? Have you ever experienced one? As you have seen through the Learning Resources.
Discuss the nature and history of your issue : Prepare a 1,750- to 2,100-word campaign for an intervention strategy that addresses your issue. Include the following items: Discuss the nature and history of your issue. Examine the effect the issue has on society
What is the expected number of toyotas : Customers arrive at Jackie's Jelly Bean Joint according to a Poisson process at the rate of 1 customer every 3 minutes where {X(t); t ≥ 0} represents the number of arrivals by time t. Jackie's opens each day at 8 AM. (Please convert all times to hour..
Compute the eddy-current loss in this core : Compute the eddy-current loss in this core when the frequency is 750 Hz and the maximum flux density is 0.8 T.
Determine the hysteresis and eddy-current losses separately : Determine the hysteresis and eddy-current losses separately at both frequencies.
How business ethics is managed within that sector : Discuss major challenges, relating to business ethics, facing the sector. You are expected to focus briefly on the following issues:-  ethical issues facing the sector - sustainability focus of the sector.
Dc motor and highlight its significance : Explain the word back emf used for a dc motor and highlight its significance.

Reviews

Write a Review

Mathematics Questions & Answers

  Questions on ferris wheel

Prepare a Flexible Budget Gator Divers is a company that provides diving services such as underwater ship repairs to clients in the Tampa Bay area.

  Logistic map

This assignment has two question related to maths. Questions are related to bifurcation cascade and logistic map.

  Finding the probability of cards

This assignment has questions related to probabiltiy.

  Systems of ode

Find all the xed points, and study their stability and Draw the phase portrait of the system, as well as the graphs of the solutions in all relevant cases.

  Derive the boolean expression

Derive the Boolean Expression and construct the switching circuit for the truth table stated

  System of equations

Evaluate which equations are under-identified, just-identified, and over-identified.

  Linear programming problem

Linear programming problem consisting of only two constraints with one objective function.

  Find the natural domain

Find the natural domain of the given functions.

  Introduction to numerical methods

Compute the coecients of the polynomials using the term recurrence relation.

  Chart of the topological manifold

De?nition of smoothness of functions on a smooth manifold is chart independent and hence geometric.

  Mathematics in computing

Questions related on mathematics in computing.

  Complex problems

Complex problems

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd