Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Liquid chlorine is unloaded from rail tankers into a storage vessel. To provide the necessary NPSH, the transfer pump is placed in a pit below ground level. Given the following information, calculate the NPSH available at the inlet to the pump, at a maximum flow rate of 16,000 kg/h.
The total length of the pipeline from the rail tanker outlet to the pump inlet is 50 m. The vertical distance from the tank outlet to the pump inlet is 10 m. Commercial steel piping, 50 mm internal diameter, is used.
Miscellaneous friction losses due to the tanker outlet constriction and the pipe fittings in the inlet piping are equivalent to 1000 equivalent pipe diameters. The vapor pressure of chlorine at the maximum temperature reached at the pump is 685 kN/m2 and its density and viscosity, 1286 kg/m3 and 0.364 mNm-2 s. The pressure in the tanker is 7 bara.
Why a substance is being heated at a fast rate the temperature of decomposition
Assist with the setting of design variables necessary for sizing equipment
Use Laplace transformation to solve the initial value problem
Equal rates of mass transfer for the production of the fine chemical are required. This is often required for certain types of organic synthesis.
Application of reverse osmosis principles for the desalination of sea water
Prepare the design and evaluation of a new chemical manufacturing process.
Adsorption and Membrane Processes
Draw T-S diagram of the cycle.
The potential energy between two atoms A and B are constants and r the interatomic separation distance.
Implications of the future of fabrication for international trade, transportation, and logistics
The atmospheric pressure of 100k Pa acts on the other side of the piston. The gas is heated until the volume is doubled and the final pressure is 500 kPa. Calculate the work done by the gas.
Evaluate particle diameter at different terminal gas velocities
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd