Suppose v and w are two normed spaces

Assignment Help Mathematics
Reference no: EM13123593

Linear Mapping in Subsets

Question 1.

1) Suppose (V, | * |) is a normed space. If x, y E V and r is a positive real number, show that the open r-balls Br(x) and Br(x + y) in V are homeomorphic.

2) Suppose V and W are two normed spaces. If A : V ---> W is a linear map, then show that it is continuous at every point v E V if and only if it is continuous at 0 E V.

3) Suppose A: (V, | * |) ---> (W, | * |w) is a linear map between normed spaces, and there is a number R E R such that |A(v)|w <= R|v|_v for all v E V. Explain why A is continuous.

Question 2

Let (0,1) denote the open unit interval in R, and C(0,1) the set of all continuous functions (0,1) ---> R. Is C(0,1) a subset of B((0,1),R) the set of all bounded functions on (0,1)? Is C(0,1) a normed space with the sup-norm | * | given by |f| = sup_(t E (0,1){|f(t)|}?

Question 3

1) For a compact topological space, and Y a compacct subset of X. The inclusion i: Y --->X gives a function i* : B(X,R) ---> B(Y,R), from the bounded functions on X to the bounded functions on Y by i*(f) = f in i for each f E B(X,R). Explain why i* is surjective.

2) Using the sup norm | * | on both these sets of bounded functions, for a function f E B(X,R), what, is any, is the relation between |f| and |i* (f)|. Is i* continuous?

3) For a compact topological space X, denoted by C(X) the banach space of continuous functions on X with the usual sup-norm.Following the idea of part (1), explain why a continuous function alpha: X --->Z between two compact topological spaces gives a function alpha*:C(Z) ---> C(X)

4) Explain why alpha* of part (3) is a linear map

5) Explain why alpha* of part (3) is continuous.

6) If I: X ---> X is the identity function, show that I*, as in part (3), is the identity function C(X) ---> C(X).

7) If alpha: X_1 ---> X_2 and beta: X_2 ---> X_3 are continuous functions of compact topological spaces, explain why (beta is in alpha)* = alpha* is in beta*

8) Hence prove that if gama: X --> Z is a homeomorphism of compact topological spaces, gama*: C(Z) ---> C(X) is a homeomorphism.

Reference no: EM13123593

Questions Cloud

Analyticity and differentiability : Assume that f(z) is analytic at the origin and f(0) = first derivative of f at 0 = 0. Prove that f(z) can be written in the form f(z) = [z^2]g(z), where g(z) is analytic at z = 0.
Graphing a linear equation : Graph the linear equation for the indicated values of the independent variable.Show this on a Graph as well as the formula
Amount of overhead cost : The amount of overhead cost that the company applied to work in process for October was:
Graph the dynamically efficient market : Graph the dynamically efficient market for two periods on one graph and graph the dynamically efficient market for each period on it's own graph. Suppose the government sets a price control equal to 20.
Suppose v and w are two normed spaces : Suppose (V, | * |) is a normed space. If x, y E V and r is a positive real number, show that the open r-balls Br(x) and Br(x + y) in V are homeomorphic.
Find sample to be accurate within ten peaches per tree : Find the 98% confidence interval for the mean number of peaches per tree. How many trees does she need to sample to be accurate within 10 peaches per tree?
Determine population for production line to be tested : Ninety of these flashlights are selected at random from the production line to be tested, and 15 are found to be defective. The population is?
Graphing binomials from trinomials : Using graphing to check your answers is helpful. When you factor a trinomial into two binomials, each binomial represents a linear relationship. If you plot the two binomials (which are just lines) on a graph
Distance and graphing in 3d space : Find the distance from the origin to the line passing through the point P(3,1,5) and having the direction vector v=2i-j+k.

Reviews

Write a Review

Mathematics Questions & Answers

  Questions on ferris wheel

Prepare a Flexible Budget Gator Divers is a company that provides diving services such as underwater ship repairs to clients in the Tampa Bay area.

  Logistic map

This assignment has two question related to maths. Questions are related to bifurcation cascade and logistic map.

  Finding the probability of cards

This assignment has questions related to probabiltiy.

  Systems of ode

Find all the xed points, and study their stability and Draw the phase portrait of the system, as well as the graphs of the solutions in all relevant cases.

  Derive the boolean expression

Derive the Boolean Expression and construct the switching circuit for the truth table stated

  System of equations

Evaluate which equations are under-identified, just-identified, and over-identified.

  Linear programming problem

Linear programming problem consisting of only two constraints with one objective function.

  Find the natural domain

Find the natural domain of the given functions.

  Introduction to numerical methods

Compute the coecients of the polynomials using the term recurrence relation.

  Chart of the topological manifold

De?nition of smoothness of functions on a smooth manifold is chart independent and hence geometric.

  Mathematics in computing

Questions related on mathematics in computing.

  Complex problems

Complex problems

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd