Set up the null and alternative hypotheses

Assignment Help Basic Statistics
Reference no: EM13848316

[1] An earlier study claims that U.S. adults spend an average of 114 minutes with their families per day.  A recently taken sample of 25 adults showed that they spend an average of 109 minutes per day with their families.  The sample standard deviation is 11 minutes.  Assume that the time spent by adults with their families has an approximate normal distribution. We wish to test whether the mean time spent currently by all adults with their families is less than 114 minutes a day.

a) Set up the null and alternative hypotheses.

Null Hypothesis (Ho): µ = 114

Alternative Hypothesis (Ha): µ < 114

b) Select the distribution to use.  Explain briefly why you selected it.

The distribution selected for this is t distribution because sample size is less than 30.

If the size of a sample is less than 30, in general you can't use a t-distribution unless...

Did you check your work in [4] of Lab #2 with my solution?

c) Using the 2.5% significance level, determine the rejection and non-rejection regions based on your hypotheses in a).  State the critical value.

Since this is a lower tailed test so the lower critical value will be with n-1= 25-1=24 degrees of freedom at 0.025 level of significance is -2.0639. So the rejection region is when test statistics value is smaller than the lower critical value and non-rejection region is when test statistics value is bigger than the lower critical value.

d) Calculate the value of the test statistic.

t Test for Hypothesis of the Mean



Data

Null Hypothesis                m=

114

Level of Significance

0.025

Sample Size

25

Sample Mean

109

Sample Standard Deviation

11



Intermediate Calculations

Standard Error of the Mean

2.2000

Degrees of Freedom

24

t Test Statistic

-2.2727



Lower-Tail Test

 

Lower Critical Value

-2.0639

p-Value

0.0161

Reject the null hypothesis

 

Test statistics value is -2.2727.

e) Does the sample information support that the mean time spent currently by all adults with their families is less than 114 minutes a day?  Explain your conclusion in words.

Since the test statistics value is smaller than lower critical value so we will reject the null hypothesis. The sample information support that the mean time spent currently by all adults with their families is less than 114 minutes a day.

[2] In recent years, the Town of New Port experienced an arrest rate of 25% for robberies (based on FBI data).  The new sheriff complies records showing that among 30 recent robberies, the arrest rate is 30%, so she claims that her arrest rate is greater than the 25% rate in the past.  We want to test if there is sufficient evidence to support her claim.

a) Set up the null and alternative hypotheses, and perform the hypothesis test with a significance level of 0.05.

Null Hypothesis (Ho): p = 0.25

Alternative Hypothesis (Ha): p < 0.25

Z Test of Hypothesis for the Proportion



Data

Null Hypothesis            p =

0.25

Level of Significance

0.05

Number of Items of Interest

9

Sample Size

30



Intermediate Calculations

Sample Proportion

0.3

Standard Error

0.0791

Z Test Statistic

0.6325



Upper-Tail Test

 

Upper Critical Value

1.6449

p-Value

0.2635

Do not reject the null hypothesis

 

This is a binomial situation (arrested or not).  But you used a Z-test.  Why not a t-test or something else?  Have you reviewed your work on [3] of Lab #2?

b) Does the sample information support that her claim that the arrest rate is greater than 25%?  Explain your conclusion in words.

Since the test statistics value is smaller than the upper critical value, we will not be able to reject the null hypothesis and conclude that the sample information does not support that her claim that the arrest rate is greater than 25%.

[3] A survey conducted by the American Automobile Association showed that a family of four spends an average of $215.60 per day while on vacation.  Suppose a sample of 64 families of four vacationing at Niagara Falls resulted in a sample mean of $252.45 per day and a sample standard deviation of $74.50.  We shall use a 0.05 significance level to test the claim that a family of four will spend more money, on average, when vacationing at Niagara Falls per day than the average amount for a family of four claimed by the American Automobile Association.

a) Set up the null and alternative hypotheses, and perform the hypothesis test.

Null Hypothesis (Ho): µ = 215.60

Alternative Hypothesis (Ha): µ > 215.60

Z Test of Hypothesis for the Mean



Data

Null Hypothesis                       m=

215.6

Level of Significance

0.05

Population Standard Deviation

74.5

Sample Size

64

Sample Mean

252.45



Intermediate Calculations

Standard Error of the Mean

9.3125

Z Test Statistic

3.9570



Upper-Tail Test

 

Upper Critical Value

1.6449

p-Value

0.0000

Reject the null hypothesis

 

Why is this by a Z-test?  You didn't use the Z-distribution in [1] of Lab #2?

Based on the hypothesis test, we will reject the null hypothesis.

b) Based on results of the hypothesis test in part a), does it appear that the population mean amount spent per day by families visiting Niagara Falls is more than the mean amount per day for a family of four reported by the American Automobile Association?  Explain.

Since the test statistics value is bigger than the upper critical value so we will reject the null hypothesis and conclude that it appear that the population mean amount spent per day by families visiting Niagara Falls is more than the mean amount per day for a family of four reported by the American Automobile Association.

[4] In the case of Casteneda v. Partida, 1977, it was found that during a period of 11 years in Hilda County, Texas, 870 people were selected for grand jury duty, and 39% of them were Americans of Mexican ancestry.  Among the people eligible for grand jury duty, 79.1% were Americans of Mexican ancestry.  We shall use a 0.02 significance level to test the claim that the selection process is biased against Americans of Mexican ancestry.

a) Set up the null and alternative hypotheses, and perform the hypothesis test.

Null Hypothesis (Ho): p = 0.791

Alternative Hypothesis (Ha): p ≠ 0.791

Level of significance = 0.02

Z Test of Hypothesis for the Proportion



Data

Null Hypothesis            p =

0.791

Level of Significance

0.02

Number of Items of Interest

339

Sample Size

870



Intermediate Calculations

Sample Proportion

0.389655172

Standard Error

0.0138

Z Test Statistic

-29.1149



Two-Tail Test

 

Lower Critical Value

-2.3263

Upper Critical Value

2.3263

p-Value

0.0000

Reject the null hypothesis

 

This is a binomial situation (American of Mexican ancestry or not).  But you used a Z-test.  Why not a t-test or something else?  Have you reviewed your work on [3] of Lab #2?

Based on the hypothesis test, we will reject the null hypothesis.

b) Does the jury selection system appear to be fair?

Since the test statistics value is smaller than the lower critical value so we will reject the null hypothesis and conclude that jury selection system does not appear to be fair.

But since your setup is for a two-tail test, your finding in (a) is that there is sufficient evidence that p (whatever this represents) is NOT 79.1% (it could be larger or smaller than 79.1%).  Thus you need to explain why this leads to your conclusion in (b).

[5] A bakery in my neighborhood produces loaves of bread with "1 pound" written on the label.  Weights of randomly selected sampled loaves from today's production were recorded below:

1.02

0.97

0.98

1.04

1.02

1.00

0.98

1.03

1.05

0.99

1.02

1.06

0.98

1.01

0.99

1.02

a) If you are to perform a hypothesis test to test the claim on the label that the mean weight of the entire loaves of bread production is more than "1 pound," what distribution are you going to apply and explain why?

We will apply the t distribution because the sample size is less than 30 and we want to test the population mean.

Now I really see that you don't review what you have done with your graded work.  This have been the most important issue in the lab #2.

b) If an average weight is less than or equal to "1 pound," then customers think that the bakery is taking advantage of its weight.  When customers find out its actual weight, they might certainly complain about it.  Use a 0.05 significance level to test the claim that the mean weight of the entire loaves of bread production is more than "1 pound."

Null Hypothesis (Ho): µ = 1

Alternative Hypothesis (Ha): µ > 1

t Test for Hypothesis of the Mean



Data

Null Hypothesis                m=

1

Level of Significance

0.05

Sample Size

16

Sample Mean

1.01

Sample Standard Deviation

0.027080128



Intermediate Calculations

Standard Error of the Mean

0.0068

Degrees of Freedom

15

t Test Statistic

1.4771



Upper-Tail Test

 

Upper Critical Value

1.7531

p-Value

0.0802

Do not reject the null hypothesis

 

Based on the hypothesis test, we will not reject the null hypothesis.

c) Do you think that the bakery is correct in its label claim?

We can see that the test statistics value is smaller than the upper critical value so we will not be able to reject the null hypothesis and conclude that the mean weight of the entire loaves of bread production is not more than "1 pound."

Not correct to state above, instead, state that there is not enough (or insufficient) evidence that the mean weight of the entire loaves of bread production is more than "1 pound."

 

[6] On January 7, 2000, the Gallup Organization released the results of a poll comparing lifestyles of today with that yesteryear.  Then poll results were based in telephone interviews with a randomly selected national sample of 1,031 adults, 18 years and older, conducted December 20-21, 1999.  One question asked if the respondent had vacationed for six days or longer within the last 12 months.  Suppose that we will attempt to use the poll's results to justify the claim that more than 40 percent of U.S. adults have vacationed for six days or longer within the last 12 months.  The poll actually found that 42 percent of the respondents had done so.  Would you conclude that more than 40 percent of U.S. adults have vacationed for six days or longer within the last 12 months?  Explain.

This is a binomial situation (yes or no).  But you used a Z-test.  Why not a t-test or something else?  Have you reviewed your work on [3] of Lab #2?

Null Hypothesis (Ho): p = 0.40

Alternative Hypothesis (Ha): p > 0.40

Level of significance = 0.05

Z Test of Hypothesis for the Proportion



Data

Null Hypothesis            p =

0.4

Level of Significance

0.05

Number of Items of Interest

433

Sample Size

1031



Intermediate Calculations

Sample Proportion

0.419980601

Standard Error

0.0153

Z Test Statistic

1.3096



Upper-Tail Test

 

Upper Critical Value

1.6449

p-Value

0.0952

Do not reject the null hypothesis

 

Since the test statistics value is smaller than the upper critical value so we will not be able to reject the null hypothesis and conclude that not more than 40 percent of U.S. adults have vacationed for six days or longer within the last 12 months.

Again the correct way to state your finding is that there is insufficient evidence that more than 40 percent of U.S. adults have vacationed for six days or longer within the last 12 months.  This is because you test on the claim (null hypothesis) using sample data, not the entire population.  It won't be 100% sure about the claim.  So you can conclude that there is sufficient evidence or insufficient evidence that ..., instead of stating that you can conclude that ...

Reference no: EM13848316

Questions Cloud

What is the value of v : The angle of inclination is 450 and the top is connected to a well of diameter 40 m. If the body just manages to cross the well, what is the value of v
Prepare for cash budget-projected sales : Of Sharpe’s sales 10 percent is for cash, another 60 percent is collected in the month following the sale, and 30 percent is collected in the second month following the sale. November and December sales for 2013 were $220,000 and $175,000, respective..
Normal curve approximation to the binomial distribution : Solve the problem using the normal curve approximation to the binomial distribution.
B. diagram each research design and label test and treatment : b. Diagram each research design and label tests and treatment precisely
Set up the null and alternative hypotheses : An earlier study claims that U.S. adults spend an average of 114 minutes with their families per day.  A recently taken sample of 25 adults showed that they spend an average of 109 minutes per day with their families.  The sample standard deviatio..
What is the effective rate of interest : A pawnshop will lend $6,250 for 45 days at a cost of $30 interest. What is the effective rate of interest?
Financing perspective-they are acquiring-distributing case : What is the free cash flow for this industry for 2015? Calculate it two ways -from an operating and from a financing perspective. Then explain in words how the company is generating/using cash from an operating perspective and explain using the finan..
What is Probability of finishing-southwestern university : After 6 months of study, much political arm wrestling, and some serious financial analysis, Dr. Martín Starr, president of Southwestern University, had reached a decision. Develop a network drawing for Hill Construction and determine the critical pat..
How did the slave impact the economics of the south : Internet resources can you describe the different types of duties and roles that enslaved people endured in America? How did the slave impact the economics of the South

Reviews

Write a Review

Basic Statistics Questions & Answers

  Statistics-probability assignment

MATH1550H: Assignment:  Question:  A word is selected at random from the following poem of Persian poet and mathematician Omar Khayyam (1048-1131), translated by English poet Edward Fitzgerald (1808-1883). Find the expected value of the length of th..

  What is the least number

MATH1550H: Assignment:  Question:     what is the least number of applicants that should be interviewed so as to have at least 50% chance of finding one such secretary?

  Determine the value of k

MATH1550H: Assignment:  Question:     Experience shows that X, the number of customers entering a post office during any period of time t, is a random variable the probability mass function of which is of the form

  What is the probability

MATH1550H: Assignment:Questions: (Genetics) What is the probability that at most two of the offspring are aa?

  Binomial distributions

MATH1550H: Assignment:  Questions:  Let’s assume the department of Mathematics of Trent University has 11 faculty members. For i = 0; 1; 2; 3; find pi, the probability that i of them were born on Canada Day using the binomial distributions.

  Caselet on mcdonald’s vs. burger king - waiting time

Caselet on McDonald’s vs. Burger King - Waiting time

  Generate descriptive statistics

Generate descriptive statistics. Create a stem-and-leaf plot of the data and box plot of the data.

  Sampling variability and standard error

Problems on Sampling Variability and Standard Error and Confidence Intervals

  Estimate the population mean

Estimate the population mean

  Conduct a marketing experiment

Conduct a marketing experiment in which students are to taste one of two different brands of soft drink

  Find out the probability

Find out the probability

  Linear programming models

LINEAR PROGRAMMING MODELS

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd