Record the formula of the gas you selected to run experiment

Assignment Help Physics
Reference no: EM13964764

Procedure

1. Take a gas piston from the Glassware shelf and place it on the workbench.

2. Take a balance from the Tools shelf and drop it directly onto the gas piston. Record the mass of the empty piston.
Mass of empty piston 111.420 g

3. Select one of the gases from the Chemicals shelf and fill the gas piston with 100 mL of the gas. Record the mass of the piston plus gas.
Chose CH4 Methane new mass is 111.486 g

4. Remove the gas piston from the balance.

5. Open the Data window and click on the gas piston. Click the Pushpin icon on the blue bar of the Data window to lock its display to the gas piston.

6. Take a thermometer and pressure gauge from the Tools shelf and drop them on the gas piston.

7. Take a heating plate from the Tools shelf and drop it on the gas piston.

8. Open the Properties window and click on the heating plate. In the Properties window turn the heating plate on and turn the dial to set the heat to around 200 watts.

9. Watch the temperature of the gas in the piston increase and the gas volume in the piston rise.

10. Once the temperature of the gas has reached nearly 200C, remove the piston from the heating plate.

11. The temperature will begin to fall and the gas volume displayed in the Data window will decrease. Record pairs of temperature and volume data every 10 degrees C or so, until the temperature has returned to room temperature.

Temperatures Gas Volume
190 157.32
180 153.91
170 150.39
160 146.78
150 143.21
140 139.89
130 136.66
120 133.90
110 129.43
100 126.18
90 123.49
80 120.19
70 116.63
60 113.53
50 110.15
40 106.47
30 103.08
21 100.00

NOTE: This is best accomplished by working in pairs, with one person calling out the data values and the other writing them down.

12. Next, take a constant temperature bath from the Tools shelf and place it on the workbench.

13. Using the Properties window, set the bath to dry ice.

14. Drag the bath and drop it onto the gas piston.

15. When the temperature of the gas falls to nearly -70C, Remove the gas piston from the constant temperature bath.

16. Record the temperature and volume of the gas in the piston at every 10C increment or so as it warms back up to room temperature.

Temperature Gas Volume
-70 68.91
-60 72.66
-50 75.85
-40 79.14
-30 82.65
-20 85.83
-10 89.46
0.02 92.85
10 96.25
21 100.00

Assignment

1. Record the formula of the gas you selected to run the experiment.
CH4 Methane

2. What is the constant pressure at which this experiment was run?

3. The molecular weight of the gas is shown in the Data window. Calculate the number of moles of gas from the measured masses of the empty piston and the piston plus gas.

4. Use a spreadsheet to construct a graph of the recorded data with the temperature, in degrees C, on the x-axis and the volume, in mL, on the y-axis.

5. Find the slope and intercept of the straight line fit to the data points. In Excel, the slope is given by the function SLOPE (y values, x values) and the intercept is given by the function INTERCEPT (y values, x values). Record these values.

6. Calculate the value for absolute zero, in degrees Celsius, from the equation developed in the background section of the lab manual:

T0 = -(intercept / slope)

7. The accepted value for absolute zero is -273.15C. Calculate the percent error of your results according to:

%error = |T(experimental) - T(accepted)| / |T(accepted)| * 100

8. In designing the experimental procedure, should you aim to use a large or small initial volume of air? Explain why.

9. In designing the experimental procedure, should you try to control the heating/cooling rate of the apparatus to be slow or fast? Explain why.

10. This experiment extrapolates the behavior of an ideal gas down to coldest possible range. In reality, the gas would condense into a liquid as it approaches absolute zero. Does this affect the conclusion reached regarding the value of absolute zero?

11. Amazingly enough, researchers have recently been able to cool a low-density gas of sodium to nano-Kelvin temperatures, and -273.15C is indeed the limit that is approached. At these low temperatures, the gas is dominated by quantum mechanical effects.

Reference no: EM13964764

Questions Cloud

Gauss-jordan elimination to solve the system : Set up the augmented matrix while using Gauss-Jordan elimination to solve the system. Provide some notation showing how to proceed from one augmented matrix to the next.
Find the magnitude of the electric flux through the sheet : A flat sheet is in the shape of a rectangle with sides of lengths 0.400 m and 0.600 m . The sheet is immersed in a uniform electric field of magnitude 74.5 N/C that is directed at 20 degrees from the plane of the sheet. Find the magnitude of the e..
Amount of labor-hours based on shifts : Write a matrix A that denotes the amount of labor-hours based on shifts and each type of labor (carpenter, electrician, or plumber). Write a column vector B representing labor costs per shift.
What is allowable power dissipation from the upper surface : From wind tunnel tests under the same flow conditions , the average frictional shear stress on the upper surface is determined to be 0.0625N/m^2. What is the allowable power dissipation from the upper surface of the board if the average surface te..
Record the formula of the gas you selected to run experiment : This experiment extrapolates the behavior of an ideal gas down to coldest possible range. In reality, the gas would condense into a liquid as it approaches absolute zero. Does this affect the conclusion reached regarding the value of absolute zero..
Determine appropriate logistics methods in various scenarios : Identify and compare at least four to five factors (cost, shelf life, weather, etc.) that impact transportation needs. Determine appropriate logistics methods in various scenarios (local, out-of-state, regional, coast-to-coast, and global)
Identify an appropriate study design : Discuss the strengths and weaknesses of the design supporting your selection.
What is the bound charge density in the charged region : In one particular instance a 0.1 microampere beam bombarded an area of 25 square cm of Lucite (epsilon-sub-r = 3.2) for 1 second, and essentially all the electrons were trapped about 6 mm below the surface in a region about 2mm thick. the block wa..
Analyze the key management skills discussed : Analyze the key management skills discussed and determine which you believe are the most important for a successful hospitality and tourism manager to possess. Provide specific examples to support your response. Analyze the trends in leadership and m..

Reviews

Write a Review

Physics Questions & Answers

  Find the magnitude of the resulting magnetic field

A sphere of radius R is uniformly charged to a total charge of Q. It is made to spin about an axis that passes through its center with an angular speed ω. Find the magnitude of the resulting magnetic field at the center of the sphere.

  Find the equivalent resistance

A resistor is in the shape of a cube, with each side of resistance  R . Find the equivalent resistance between any two of its adjacent corners.

  What is the electric field at the location

Question: Field and force with three charges? What is the electric field at the location of Q1, due to  Q 2 ?

  What is the maximum displacement of the bridge deck

What is the maximum displacement of the bridge deck?

  What is the magnitude of the current in the wire

What is the magnitude of the current in the wire as a function of time?

  Blackbody

Questions on blackbody, Infra-Red Detectors & Optic Lens and Digital Image.

  Gravity conveyor

Illustrate the cause of the components accelerating from rest down the conveyor.

  Calculate the dc voltage

Calculate the dc voltage applied to the circuit.

  Quadrupole moments in the shell model

Quadrupole moments in the shell model

  Determine the tension in each string

Determine the tension in each string

  Introductory mechanics: dynamics

Calculate the smallest coefficient of static friction necessary for mass A to remain stationary.

  Evaluate maximum altitude

Evaluate maximum altitude?

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd