Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Question
You might agree with me that policy deployment and project portfolio management (PPM) go hand-in-hand. At ProjectLink we place much emphasis on "balanced portfolio" as a concept. By this we mean that in a matrix and project-based organisation it has to be ensured that the mix of projects in the business at any given point in time optimally aligns to policy (i.e. vision, mission, values, objectives, etc.) Such an approach means that projects that have to be killed because of changing circumstances (as in change in legislation, erosion of its business case due to any single or a combination of factors, emergencies, etc.) must be terminated expediently, projects that are waiting in the pipeline must have a priority status, projects that have to be realigned must be able to undergo the necessary realignment effectively and efficiently, etc. The link between portfolio level objectives with portfolio success factors that are achieved through individual projects and points out how contributes to strategic fit, use of synergies, etc. As you have probably experienced many times in your dealings with projects, often projects within a single organisation compete for the same resources and this then logically leads to conflict that could be very harmful to the organisation if not managed correctly. We try to avoid this through optimal portfolio management, which then seems to serve the same function as "quality policy deployment" which has the aim of reducing such types of conflict. Would you agree with me that portfolio balancing is essentially about maintaining the optimal balance of the most optimal projects (i.e. portfolio quality) and that this is a logical extension of or perhaps a practical manifestation of policy deployment? I would like to hear your thoughts in this regard.
Reference style: Harvard style
A sphere of radius R is uniformly charged to a total charge of Q. It is made to spin about an axis that passes through its center with an angular speed ω. Find the magnitude of the resulting magnetic field at the center of the sphere.
A resistor is in the shape of a cube, with each side of resistance R . Find the equivalent resistance between any two of its adjacent corners.
Question: Field and force with three charges? What is the electric field at the location of Q1, due to Q 2 ?
What is the maximum displacement of the bridge deck?
What is the magnitude of the current in the wire as a function of time?
Questions on blackbody, Infra-Red Detectors & Optic Lens and Digital Image.
Illustrate the cause of the components accelerating from rest down the conveyor.
Calculate the dc voltage applied to the circuit.
Quadrupole moments in the shell model
Determine the tension in each string
Calculate the smallest coefficient of static friction necessary for mass A to remain stationary.
Evaluate maximum altitude?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd