Problem based on deaths in the species

Assignment Help Simulation in MATLAB
Reference no: EM131022212

Engineering Mathematics and Computing

MATLAB course

All the following exercises and problems have to be performed using MATLAB, with the exclusion of those in which you are required to solve the problem analytically (specified in the text of the exercise as "analytically" or "use an equation").

The results have to be uploaded on the dedicated drop box on Study Space under the form of a .pdf file (you may use Word to produce your .pdf file, or any other method of your choice).

For each problem, you are supposed to copy in the .pdf file the code you used to solve problem (your input in MATLAB) and the numerical result (MATLAB's output). If the output involves a graph, the figure has to be included, accompanied by an explanation (the inclusion of proper labels and legends in the figure is recommended). For the answers that involve mathematical formulae (analytical problems) you may even write the formulae by hand and include a figure (scan), if you feel more comfortable like that (of course you may also produce the formulae with Word or with the editor of your choice).

Since this is an individual assignment, you are not allowed to copy your answers from other people. You may anyway contact your instructor if you do not know how to solve a particular problem.

1 Exercise

Let us consider a species of animal that has access to unlimited resources. We may assume that both the number of deaths in the species and the number of off-springs will be proportional to the number of individuals. The differential equation for this model is

dx/dt = αx - βx.                              (1)

Here x is the number of animals, and α, β are constants, so that we may just re-define

γ = α - β and write

This may be solved writing

dx/dt = γx.                                     (2)

dx/x = γdt.                                     (3)

By setting t0 = 0 and x0 as the initial time and population, and integrating the left side between x0 and x, and the right side between 0 and t, we find the integral relation between x and t

x_0xdx'/x' = γt,                             (4)

from which we get

ln (x/x0) = γt,                                 (5)

x(t) = x0eγt.                                   (6)

In all the following problems we will assume x0 = 1000.

1.1 Problem

Plot eq. (6) for 3 different values of γ (namely: γ = 0.1, γ = 0, γ = -0.1) between t = 0 and t = 20. Use the same graph and different colours for each curve.

1.2

Assume γ = 0.1. We are going to use three different methods to predict the time at which the population will reach one billion individuals (according to the proposed model). For the following computations use the long format.

1.2.1 Problem

Use eq. (6) and MATLAB's non-linear solver to predict at which time t there will be 109 individuals.

In detail, we procede like this. From the change of variable rule dt = (dt/dx)dx = 1/(γx)dx,

t = t - t0 = t_0t dt = (1/γ) x_0x dx/x

1.2.2 Problem

Use eq. (4) and MATLAB's numerical integrator to predict at which time t there will be 109 individuals.

1.2.3 Problem

Using the analytical result eq. (5), predict at which time t there will be 109 individuals. Compare the result to those of problems 1.2.1 and

1.3. Problem

What happens if you use eq. (5) to obtain the time at which there will be 109 individuals in the γ = -0.1 case? Discuss the meaning of your result.

1.4 Problem

Setting γ = 0.1, plot the results of the first 20 iterations of the Euler Integration method for the eq. (2), starting again from x0 = 1000 and using ?t = 1 as an integration step, and compare to the analytical result eq. (6) (plot both results in the same graph).

1.5 Problem
For some kind of animals, the result of the Euler integrator may be more realistic than the analytical result eq. (6). Explain why.

2 Exercise
Let us assume now that the animals do not have access to unlimited resources. We may expect some competition to arise between them. One way to express this competition is through the logistic growth model.

dx/dt = γ (x - x2/C)                         (7)

Eq. (7) leads to the following integral (setting again t0 = 0 and x0 as the initial time and population)

x_0x dx'/ (x' - x'2/C) =  γt               (8)

2.1 Problem

Show (analytically) that this integral may be solved as

x(t) = Cx0eγt / (C - x0 + x0eγt)        (9)

2.2 Problem

Setting x0 = 1000, γ = 0.1, plot the function defined by eq. (9) between t = 0 and t = 100 for the following values of C: C = 500, C = 2000, C = 5000. Use the same graph and different colours for each curve.

2.3 Problem

Explain (using an equation) why C is named "the capacity" of the environment.

2.4

Let us set x0 = 1000, γ = 0.1 and C = 2000, and use the long format. We are going to use two different methods to check the time at which the proposed model predicts the presence of 1999 individuals in the environment.

2.4.1 Problem

Use eq. (9) and MATLAB's non-linear solver to predict at which time there will be 1999 individuals in the environment.

2.4.2 Problem

Use eq. (8) and MATLAB's numerical integrator to predict at which time there will be 1999 individuals in the environment. Compare with the result of problem 2.4.1.

3 Exercise

Let us now consider x as the number of preys (e.g., gazelles) and y the number of predators (lions). In the savanna there is plenty of grass, so as long as they do not meet lions, gazelles reproduce happily

dx/dt = αx,                                      (10)

α > 0. On the other hand, if they do not meet gazelles, lions starve to death

dy/dt = -γy,                                     (11)

γ > 0. But lions and gazelles do meet, and the dynamics of their populations is given (or better modelled) by the Lotka-Volterra equation

{dx/dt = αx - βxydy/dt = -γy + δxy       (12)

3.1 Problem

Write (12) as a vector equation

dx/dt = F(x),                                    (13)

i.e. explicitely write the functional dependence of the components Fi on the components xi.

3.2 Problem

Plot the vector field F (defined in problem 3.1) on the first quadrant (0 ≤ x ≤ 3000, 0 ≤ y ≤ 300).

3.3

Let us now set α = 0.1, β = 10-3, γ = 0.1 and δ = 10-4 Use MATLAB's numerical integrator ODE45 to solve eq. (12) between t = 0 and t = 500. For each initial condition, plot your results in two different graphs, one showing x and y as functions of time, and one showing y as a function of x. As initial conditions, use:

3.4 Problem

x0 = 2000, y0 = 40,

3.5 Problem

x0 = 3000, y0 = 20,

3.6 Problem

x0 = 1000, y0 = 100.

3.7 Problem

Explain (using an equation) what is special about the latter initial conditions.

Reference no: EM131022212

Questions Cloud

What is the equity at the end of the year : During the year, assets increase $80,000 and liabilities increase $46,000. What is the equity at the end of the year?
What is range of possible equilibrium prices in market : How many high quality coins will change hands? How many low quality coins will change hands - What is the range of possible equilibrium prices in this market? How many high quality coins will be change hands?
What is the value of labor productivity : Assume that capital, K, is fixed in this economy and equal to 400 units. When the labor market is in equilibrium, what is the value of labor productivity
Razar sharp company purchased equipment on july : Razar Sharp Company purchased equipment on July 1, 2014, for $50,490. The equipment was expected to have a useful life of three years, or 7,560 operating hours, and a residual value of $1,350.
Problem based on deaths in the species : Let us consider a species of animal that has access to unlimited resources. We may assume that both the number of deaths in the species and the number of off-springs will be proportional to the number of individuals.
An equilibrium mixture of the above system : An equilibrium mixture of the above system was found to contain the following concentrations: HCl(g) = 0.35 mol/L, O2(g) = 0.078 mol/L and H2O(g) =1.2 mol/L. The equilibrium concentration of Cl2(g) is calculated to be _______ mol/L
What is the effective annual rate on your mortgage : Your mortgage statement says that your loan is at 5.27 percent APR, with monthly payments. What is the effective annual rate on your mortgage (i.e., taking into account the monthly compounding)? Enter answer in percents, accurate to two decimal place..
What was happening to real wages in argentina : General Juan Perón, the former dictator of Argentina, once said of the labor market in his country: "Prices have gone up the elevator, and wages have had to use the stairs." In this situation, what was happening to real wages in Argentina? Was un..
How try to reduce unemployment at time of rising inflation : "To try to use monetary policy to reduce unemployment when inflation is already above target is playing with fire and could lead us down the road that we followed in the 1970s." What does the author mean by "the road that we followed in the 1970s..

Reviews

Write a Review

Simulation in MATLAB Questions & Answers

  Calculate the stress intensity factor

Use the three-parameter zone finite element method or the boundary collocation method to calculate the stress intensity factor K, at the crack tip for the plate

  Build a simulation using newtons laws of motion

Build a new and different simulation of your own using Newtons laws of motion and Show the code and describe how it works

  Write the specification of load mover

Write the specification of LOAD MOVER detailed of the whole design and precise for automatic control section and divide the design into various modules and Is the kernel required if yes which one?

  Design the automatic control section using statecharts

Aim of this project is to design an embedded system which can move loads from one place to another. The system can be operated manually, automatically and wirelessly.

  Need an expert who can model a drill in simulink

Need an expert who can model a drill in Simulink. Working model of a drill needing for an improvment to behave more realistically as a drill to drill through plastic block.

  Project is on load frequency control using fpid

Project is on load frequency control using FPID tuned using GA and PSO algorithm and the system is a two area system.

  Number of packets received with time

Let x be the number of packets received with time -

  Build a matlab based graphical user interface

Build a Matlab based graphical user interface (GUI) that operates in conjunction with a base Matlab/ Simulink simulation program. Any base simulation is considered acceptable.

  Build a matlab based graphical user interface

Build a Matlab based graphical user interface (GUI) that operates in conjunction with a base Matlab/ Simulink simulation program. Any base simulation is considered acceptable.

  Simulate the standardised sum of independent

Simulate the standardised sum of independent and identically distributed variates - Fit a linear regression model as in Q5, and plot your estimates for β0 and β1 as N increases, together with a line indicating their true values. Supply your code.

  Plot the original periodic square wave

Plot the original periodic square wave on the same graph. Comment on the difference between the original periodic square wave and its truncated Fourier series presentation.

  Use matlab to plot the function

Plot the original periodic square wave on the same graph. Comment on the difference between the original periodic square wave and its truncated Fourier series presentation.

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd