Problem 1 for the following evaluate whether the given sets

Assignment Help Mathematics
Reference no: EM13347911

Problem 1. For the following, Evaluate whether the given sets of vectors form a basis or not. If you think it is a basis, then prove it, if not then show why not. Explain what you do.

(1) {(1, 3), (-2, 1)} for R2
(2) {(1, 2, 1), (2, 0,-1), (4, 4, 1)} for R3
(3) {(1, 2, 1), (2, 1,-1), (4, 4, 1)} for R3
(4) {(1, 0, 4, 0, 6, 7), (0, 2, 0, 0, 1,-3), (-2, 0, 0, 0, 3,-4), (0, 2, 3, 0, 4, 5), (-2, 7,-5, 0,-3, 9), (-1, 0, 3, 0, 4,-5)} for R6

Problem 2. Recall that the dot product in Rn is given by ?v,w? = v · w = v1w1 + v2w2 + . . . + vnwn, where v = (v1, . . . ,vn) and w = (w1, . . . ,wn). Two vectors v and w are perpendicular exactly when ?v,w? = 0. The length of a vector v is de?ned to be

An n × n matrix Q is orthogonal if QTQ = I, that is, QT = Q-1, where superscript T denotes transpose.

(1) Show that Q is orthogonal if and only if the columns of Q form an orthonormal basis {Q , . . . ,Q }, that is,

(2) Show that a 2×2 orthogonal matrix Q has one of the following two forms.

(3) What do these two matrices do to vectors when you apply the matrix to the vector Qv? Choose several particular  and apply the matrices to vectors (using Maple if you wish) to see what effects these matrices have. Explain what you see in your examples. Finally, prove what you believe by doing the linear transformations to the standard basis vectors e1 = (1, 0) and e2 = (0, 1) and interpreting the output geometrically.

Problem 3. Prove the subsequent statements.

a.) A linear transformation T . Rm → Rm is invertible (i.e. T 1 exists) if and only if, for any basis {v1, . . . , vm} of Rm, {T(v1), . . . , T(vm)}
is also a basis of Rm.

b.) A linear map T . Rn → Rm is not one-to-one if m < n.

c.) A linear map T . Rn → Rm is not onto if m > n.

Problem 4. Let T . V → V be a linear operator on an n-dimensional vector space V . Show that the following statements are equivalent.

(1) T-1 exists.

(2) T is a one-to-one mapping (i.e., T(x) = T(y) implies x = y). This is also called an injective mapping.

(3) N(T) = 0 (This is Meyer's notation for the kernel of T).

(4) T is an onto mapping (i.e., for each v ∈ V , there is an x ∈ V such that T(x) = v). This is also called a surjective mapping.

Problem 5. Using the torus example from class, compute the homology groups of the projective plane RP2 which can be thought of as a planar disk of radius 1 whose antipodal points have been identi?ed. This space cannot exist in 3-space R3 without having self-intersections. It shows an immersion of RP2 in R3 called Boy's surface in honor of its creator, Werner Boy. It shows a way to cut up RP2 similar to what you did with the torus in class. Again, v1 is identi?ed with v11 etc and this holds for all edges between identi?ed vertices as well with the orientation eij goes from vi to vj. Find H0(RP2), H1(RP2), and H2(RP2).

Reference no: EM13347911

Questions Cloud

Analyse the techniques and assumptions utilized by the : analyse the techniques and assumptions utilized by the authors to investigate the importance of financial weaknesses
Apply cash flow analysis and time value of money concepts : apply cash flow analysis and time value of money concepts and relationships. consider that you are nearing graduation
To explore and become familiar with your discipline to : to explore and become familiar with your discipline to prepare you for your major researched essay.you might begin by
Objectivesthe objective of this assignment is to analyze : objectivesthe objective of this assignment is to analyze cross-cultural differences and their impact on international
Problem 1 for the following evaluate whether the given sets : problem 1. for the following evaluate whether the given sets of vectors form a basis or not. if you think it is a basis
1 a woman and her son are debating about the average length : 1. a woman and her son are debating about the average length of a preachers sermons on sunday morning. despite the
A newly discovered protein based on its structure or : a newly discovered protein based on its structure or sequence to an exiting protein family may be reviewed and better
Part 1questioncon-side refute the arguments below with : part 1questioncon-side refute the arguments below with evidence. the paper you turn in will be each of the following
1- explain about pres-stressed concrete2- explain about : 1- explain about pres-stressed concrete2- explain about bridge construction material3- illustrate why sometimes when we

Reviews

Write a Review

Mathematics Questions & Answers

  Questions on ferris wheel

Prepare a Flexible Budget Gator Divers is a company that provides diving services such as underwater ship repairs to clients in the Tampa Bay area.

  Logistic map

This assignment has two question related to maths. Questions are related to bifurcation cascade and logistic map.

  Finding the probability of cards

This assignment has questions related to probabiltiy.

  Systems of ode

Find all the xed points, and study their stability and Draw the phase portrait of the system, as well as the graphs of the solutions in all relevant cases.

  Derive the boolean expression

Derive the Boolean Expression and construct the switching circuit for the truth table stated

  System of equations

Evaluate which equations are under-identified, just-identified, and over-identified.

  Linear programming problem

Linear programming problem consisting of only two constraints with one objective function.

  Find the natural domain

Find the natural domain of the given functions.

  Introduction to numerical methods

Compute the coecients of the polynomials using the term recurrence relation.

  Chart of the topological manifold

De?nition of smoothness of functions on a smooth manifold is chart independent and hence geometric.

  Mathematics in computing

Questions related on mathematics in computing.

  Complex problems

Complex problems

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd