Reference no: EM13850332
1.Create a correlation table for the variables in our data set. (Use analysis ToolPak or StatPlus:mac LE function Correlation.)
a. Reviewing the data levels from week 1, what variables can be used in a Pearson's Correlation table (which is what Excel produces)?
b. Place table here (C8):
c. Using r = approximately .28 as the signicant r value (at p = 0.05) for a correlation between 50 values, what variables are
significantly related to Salary?
To compa?
d. Looking at the above correlations - both significant or not - are there any surprises -by that I mean any relationships you expected to be meaningful and are not and vice-versa?
e. Does this help us answer our equal pay for equal work question?
2 Below is a regression analysis for salary being predicted/explained by the other variables in our sample (Midpoint, age, performance rating, service, gender, and degree variables. (Note: since salary and compa are different ways of expressing an employee's salary, we do not want to have both used in the same regression.)
Plase interpret the findings.
Ho: The regression equation is not significant.
Ha: The regression equation is significant.
Ho: The regression coefficient for each variable is not significant Note: technically we have one for each input variable.
Ha: The regression coefficient for each variable is significant Listing it this way to save space.
Sal
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.991559075
R Square 0.983189399
Adjusted R Square 0.980843733
Standard Error 2.657592573
Observations 50
ANOVA
df SS MS F Significance F
Regression 6 17762.29967 2960.383279 419.1516111 1.81215E-36
Residual 43 303.7003261 7.062798282
Total 49 18066
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept -1.749621212 3.618367658 -0.483538816 0.63116649 -9.046755043 5.547512618 -9.046755043 5.547512618
Midpoint 1.216701051 0.031902351 38.13828812 8.66416E-35 1.152363828 1.281038273 1.152363828 1.281038273
Age -0.00462801 0.065197212 -0.070984788 0.943738987 -0.136110719 0.126854699 -0.136110719 0.126854699
Performace Rating -0.056596441 0.034495068 -1.640711097 0.108153182 -0.126162375 0.012969494 -0.126162375 0.012969494
Service -0.042500357 0.084336982 -0.503935003 0.616879352 -0.212582091 0.127581377 -0.212582091 0.127581377
Gender 2.420337212 0.860844318 2.81158528 0.007396619 0.684279192 4.156395232 0.684279192 4.156395232
Degree 0.275533414 0.799802305 0.344501901 0.732148119 -1.337421655 1.888488483 -1.337421655 1.888488483
Note: since Gender and Degree are expressed as 0 and 1, they are considered dummy variables and can be used in a multiple
regression equation.
Interpretation:
For the Regression as a whole:
What is the value of the F statistic:
What is the p-value associated with this value:
Is the p-value <0.05?
Do you reject or not reject the null hypothesis:
What does this decision mean for our equal pay question:
For each of the coefficients: Intercept Midpoint Age Perf. Rat. Service Gender Degree
What is the coefficient's p-value for each of the variables:
Is the p-value < 0.05?
Do you reject or not reject each null hypothesis:
What are the coefficients for the significant variables?
Using only the significant variables, what is the equation? Salary =
Is gender a significant factor in salary:
If so, who gets paid more with all other things being equal?
How do we know?
3 Perform a regression analysis using compa as the dependent variable and the same independent variables as used in question 2. Show the result, and interpret your findings by answering the same questions.
Note: be sure to include the appropriate hypothesis statements.
Regression hypotheses
Ho:
Ha:
Coefficient hyhpotheses (one to stand for all the separate variables)
Ho:
Ha:
Place D94 in output box.