Part 1 of 1 - 1 question 1 of 16let npq where pq are primes

Assignment Help Computer Networking
Reference no: EM13360371

Part 1 of 1 - 1 Question 1 of 16

Let n=pq, where p,q are primes of the same length and let phi be Euler's totient function. 

Consider the following problems: (P1) computing the output p from an input n; (P2) computing the output phi(n) from an input n. Which one of the following statements is true? 

A. if P1 is easy then P2 is easy

B. if P1 is hard then P2 is hard

C. P1 and P2 are polynomial-time equivalent

D. All of the above

2 Question 2 of 16

Consider the problem of computing discrete logarithms in a cyclic group (G,?), with group’s order m; that is, given the group’s generator g, an element y ∈ G, compute an integer x ∈ Zm such that g ? • • • ? g = y, where there are x − 1 occurrences of ?. Then consider the exhaustive search algorithm to search for the discrete logarithm of y in base g for a cyclic group G of order m. Given this algorithm and its running time t(m,n), we want to infer considerations on computing discrete logarithm in G being easy or conjectured to be hard depending on the choices of m as a function of the length n of the group elements. Let m_easy(n) be a value for m such that computing discrete logarithms in G is easy and m_hard(n) be a value for m such that computing discrete logarithms in G may be conjectured to be hard. Which functions would you select as most meaningful for m_easy(n), m_hard(n)?

A. m_easy(n)=O(n); m_hard(n)=omega(n)

B. m_easy(n)=O(poly(n)); m_hard(n)=O(poly(n))

C. m_easy(n)=O(poly(n)); m_hard(n)=omega(poly(n))

D. m_easy(n)=O(n); m_hard(n)=O(n)

3 Question 3 of 16

You plan to use a public-key cryptosystem based on the RSA trapdoor permutation in three different real-life applications, in which the attacker has, respectively, only one of the following resources: (1) a single computer, (2) a collection of computers distributed across the Internet, and (3) a quantum computer. When choosing the length of the modulus n for the RSA trapdoor permutation, you plan to choose a different length for each of the above three attacker resource scenarios. Which of the following length settings is closer to your choice?

A. (a): 1024; (b): 2048; (c): 4096

B. (a): 512; (b): 1024; (c): I would not use RSA

C. (a) 2048; (b): 4096; (c): I would not use RSA

D. (a) 512; (b): 1024; (c): 2048

4 Question 4 of 16

Consider the following three assumptions:

1) The hardness of factoring integers that are product of two primes of the same length

2) The hardness of computing discrete logarithms modulo primes

3) The hardness of inverting the RSA function.

Which of them is sufficient to construct a trapdoor function?

A. Only (1)

B. Only (2)

C. Only (3)

D. (1), (2), or (3)

5 Question 5 of 16

Let us denote as "X ci Y" the fact that random variables X and Y are computationally indistinguishable. Assume (A1,A2) is a pair of efficiently samplable (i.e., a variable sample can be efficiently generated) random variables and assume the same about (B1,B2). Which of these conditions is sufficient to have that (A1,A2) ci (B1,B2)? (Hint: Recall that when two random variables X and Y, the probability that X=x conditioned on Y=y is equal to the probability that X=x.)

A.A1 and A2 are independent, B1 and B2 are independent, A1 ci B1, A2 ci B2

B.A1 ci B1, A2 = A1, B2 = B1

C.A2 ci B2, A1 = A2, B1 = B2

D.All of the above

6 Question 6 of 16

Consider the following three assumptions:

1) The hardness of factoring integers that are product of two primes of the same length

2) The hardness of computing discrete logarithms modulo primes

3) The hardness of inverting the RSA function.

Which of them is sufficient to construct a pseudo-random generator, a pseudo-random function and a pseudo-random permutation?

A. Only (1)

B. Only (2)

C.Only (3)

D.(1), (2), or (3)

7 Question 7 of 16

Which among these are the differences between the perfect indistinguishability notion for classical symmetric encryption schemes and the (computational) indistinguishability notion for modern symmetric encryption schemes?

A. In perfect indistinguishability the adversary's algorithm runs in polynomial time and his advantage can be greater than 0 while in computational indistinguishability the adversary's algorithm is not restricted to run in polynomial time and his advantage has to be equal to 0

B. In perfect indistinguishability the adversary's algorithm is not restricted to run in polynomial time and his advantage can be greater than 0 while in computational indistinguishability the adversary's algorithm runs in polynomial time and his advantage has to be equal to 0

C. In perfect indistinguishability the adversary's algorithm is not restricted to run in polynomial time and his advantage has to be equal to 0 while in computational indistinguishability the adversary's algorithm runs in polynomial time and his advantage can be greater than 0

D. In perfect indistinguishability the adversary's algorithm runs in polynomial time and his advantage has to be equal to 0 while in computational indistinguishability the adversary's algorithm is not restricted to run in polynomial time and his advantage can be greater than 0

8 Question 8 of 16

Assume |s1|=|s2|=n and consider the functions defined, for any s1 and s2, as:

(a) G1(s1,s2)=s1 xor s2,  (b) G2(s1,s2)=(s1, s2, s1 xor s2).

We have that:

A.G1 and G2 are pseudo-random generators because their outputs are uniformly (and thus, pseudo-randomly) distributed if so are their input

B.G1 and G2 are not pseudo-random generators because either their outputs are not longer than their inputs or there exists a statistical test that distinguishes their outputs from a random string of the same length

C.G1 and G2 are not pseudo-random generators because either there exists an efficient algorithm that can compute their input from their output or their outputs are not longer than their inputs

D.G1 and G2 can be proved to be pseudo-random generators using a proof by reduction

9 Question 9 of 16

Let us denote as "X ci Y" the fact that random variables X and Y are computationally indistinguishable.

For any random variables X,Y,Z, consider the statements:

(a) if X ci Y then Y ci X,

(b) if X ci Y and Y ci X then X = Y,

(c) if X ci Y and Y ci Z then X ci Z,

(d) if X = Y then X ci Y,

(e) if X ci Y then X = Y.

Which of them are true?

A. (a), (c) and (d)

B.(b), (c) and (d)

C. (b), (c) and (e)

D.(a), (d) and (e)

10 Question 10 of 16

To prove that a permutation P is not a pseudo-random permutation, it suffices to show an efficient oracle adversary that can distinguish, with not negligible probability, the case in which its oracle is P from the case in which its oracle is a random permutation RP with the same input and output domains. To obtain an algorithm that makes this distinction, it suffices to find a distinguishing condition (or a set of them) among the adversary's query inputs and query outputs such that: (a) if the oracle is P, then the condition holds with high (e.g., 1) probability; (b) if the oracle is RP, then the condition holds with low (e.g., negligible) probability. Define the extended FT transform as the permutation that maps (L,M,R) to (R,f_k(R) xor M,f_k(M) xor L), where k is a random key, f is a pseudo-random function, and L,M,R are n-bit strings. Which of the following conditions are distinguishing conditions for the 1-round iteration and 2-round iteration of the extended FT transform, respectively? Notation: (L',R') and (L'',R'') denote the 1-round and 2-round outputs, respectively, of the FT transform on input (L,R); when we run the transform on different inputs, we use the notations (L0,R0), (L1,R1), .... for the inputs, (L0',R0'), (L1',R1'), .... for the 1-round outputs and (L0'',R0''), (L1'',R1''), .... for the 2-round outputs.

The notation for the extended FT transform is analogously defined.

A. 1-round extended FT: (L'=R); 2-round extended FT: (L0 xor L1 = L0'' xor L1'') and (R0=R1)

B. 1-round extended FT: (L'=M); 2-round extended FT: M0=M1, L0=L1 and L0''=L1''

C. 1-round extended FT: L=M=R, and R'=M'; 2-round extended FT: L=M=R, and L''=M''

D. None of the above

11 Question 11 of 16

Which among these are the differences between the indistinguishability notion with chosen message attack and the indistinguishability notion with adaptive chosen message attack?

A. In the indistinguishability with chosen message attack notion, the adversary can additionally and repeatedly query the E(k,.) algorithm as an oracle even after seeing the ciphertext and can later use these queries and responses to generate its guess for which message was encrypted as c

B. In the indistinguishability with chosen message attack notion, the adversary can additionally and repeatedly query the E(k,.) algorithm as an oracle even after seeing the ciphertext but cannot later use these queries and responses to generate its guess for which message was encrypted as c

C. In the indistinguishability with adaptive chosen message attack notion, the adversary can additionally and repeatedly query the E(k,.) algorithm as an oracle even after seeing the ciphertext and can later use these queries and responses to generate its guess for which message was encrypted as c

D. In the indistinguishability with adaptive chosen message attack notion, the adversary can additionally and repeatedly query the E(k,.) algorithm as an oracle even after seeing the ciphertext but cannot later use these queries and responses to generate its guess for which message was encrypted as c

12 Question 12 of 16

Let G:{0,1} n-->{0,1} 2n be a pseudo-random generator and consider the following encryption scheme (KG,E,D), where KG generates a random string k; E, on input key k and a message bit b, returns c = G(k) xor 1 2n if b=1 or c = G(k) if b=0 and D is naturally defined so to satisfy the decryption correctness property. 

Which of the following security notions is satisfied by (KG,E,D)?

A. security in the sense of indistinguishability

B. security in the sense of indistinguishability against chosen message attack

C. security in the sense of indistinguishability against adaptive chosen message attack

D. none of the above

13 Question 13 of 16

Let F:{0,1}^n-->{0,1}^{n} be a pseudo-random function and consider the following encryption scheme (KG,E,D), where KG generates a random string k; E, on input key k and a string m, returns c =F(k,0) xor m and D is naturally defined so to satisfy the decryption correctness property. 

Which of the following security notions is satisfied by (KG,E,D)? 

A. security in the sense of indistinguishability

B. security in the sense of indistinguishability against chosen message attack

C. perfect secrecy

D. none of the above

14 Question 14 of 16

Let P:{0,1}^n-->{0,1}^n be a pseudo-random permutation and consider the following encryption scheme (KG,E,D), where KG generates a random string k; E, on input key k and an n-bit string m, returns c =P(k,m) and D is naturally defined so to satisfy the decryption correctness property. Which of the following security notions is satisfied by (KG,E,D)?

A. security in the sense of indistinguishability

B. security in the sense of indistinguishability against chosen message attack

C. perfect secrecy

D. none of the above

15 Question 15 of 16

Consider the following three assumptions:

1) The hardness of factoring integers that are product of two primes of the same length

2) The hardness of computing discrete logarithms modulo primes

3) The hardness of inverting the RSA function.

Which of them is sufficient to construct a one-way function?

A. Only (1)

B. Only (2)

C. Only (3)

D. (1), (2), or (3)

Reference no: EM13360371

Questions Cloud

In a class all pupils take mathematics m 18 take chemistry : in a class all pupils take mathematics m 18 take chemistry c 17 take biology b and 24 take physics p of those taking 3
Choose one 1 of the three reading selections from the list : choose one 1 of the three reading selections from the list of topic choices below. read the selection in the textbook.
Task 1 create a risk identification checklist : task 1 create a risk identification checklist. nbspnbspnbspnbspnbspnbspnbspnbspnbspnbspnbspprocedure
Module fea - finite element analysisnbspquestion 2 method : module fea - finite element analysisnbspquestion 2 method to assess the value of your analysis outputnbspa what is the
Part 1 of 1 - 1 question 1 of 16let npq where pq are primes : part 1 of 1 - 1 question 1 of 16let npq where pq are primes of the same length and let phi be eulers totient
Thi is a small case study about the price mechanism and : thi is a small case study about the price mechanism and demand related to price.nbspmonsantowhen pharmacia which was
Question 1 a 25 investment produces 2750 at the end of the : question 1. a 25 investment produces 27.50 at the end of the year with no risk. if the occ 10 annually is this a good
Interest rate method problems nbspquestion 1 you are in the : interest rate method problems nbspquestion 1. you are in the process of purchasing a new automobile that will cost you
Retirement problem nbspquestion 1 you believe you will need : retirement problem nbspquestion 1. you believe you will need 150000 annually to live comfortably while retired. you

Reviews

Write a Review

Computer Networking Questions & Answers

  Networking and types of networking

This assignment explains the networking features, different kinds of networks and also how they are arranged.

  National and Global economic environment and ICICI Bank

While working in an economy, it has a separate identity but cannot operate insolently.

  Ssh or openssh server services

Write about SSH or OpenSSH server services discussion questions

  Network simulation

Network simulation on Hierarchical Network Rerouting against wormhole attacks

  Small internet works

Prepare a network simulation

  Solidify the concepts of client/server computing

One-way to solidify the concepts of client/server computing and interprocess communication is to develop the requirements for a computer game which plays "Rock, Paper, Scissors" using these techniques.

  Identify the various costs associated with the deployment

Identify the various costs associated with the deployment, operation and maintenance of a mobile-access system. Identify the benefits to the various categories of user, arising from the addition of a mobile-access facility.

  Describe how the modern view of customer service

Describe how the greater reach of telecommunication networks today affects the security of resources which an organisation provides for its employees and customers.

  Technology in improving the relationship building process

Discuss the role of Technology in improving the relationship building process Do you think that the setting of a PR department may be helpful for the ISP provider? Why?

  Remote access networks and vpns

safekeeping posture of enterprise (venture) wired and wireless LANs (WLANs), steps listed in OWASP, Securing User Services, IPV4 ip address, IPV6 address format, V4 address, VPN, Deploying Voice over IP, Remote Management of Applications and Ser..

  Dns

problems of IPV, DNS server software, TCP SYN attack, Ping of Death, Land attack, Teardrop attack, Smurf attack, Fraggle attack

  Outline the difference between an intranet and an extranet

Outline the difference between an intranet and an extranet A programmer is trying to produce an applet with the display shown in Figure 1 below such that whenever one of the checkboxes is selected the label changes to indicate correctly what has..

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd