In this simulation we are going to explore the design of a

Assignment Help Applications of MATLAB
Reference no: EM13362179

In this simulation we are going to explore the design of a recursive digital filter which might be usedvin a digital radio station. The sampling frequency used in digital radio (DAB) is either 48 kHz or 24 kHz and for the purposes of this simulation, we assume 24kHz. However, the sampling rate of the audio coming from a CD is 44.1 kHz so the radio station would need to numerically re-sample CD audio data at the DAB rate. Before this can be done, all frequencies above half the new sampling frequency would first have to be filtered out to prevent aliasing when the change in sampling frequency is subsequently carried out. For the purposes of this experiment, we will assume this anti-alias filtering is to be done using a recursive low pass filter derived from the Butterworth analogue prototype (using the bilinear transformation). We wish the digital filter to have a gain of -96dB at 12 kHz (i.e. half the sampling frequency we will be changing to after the filter has done its work) so that any residual components will be below the quantisation noise of the 16-bit representation used by CD. However, this one point of reference, as it stands, is not enough to design the filter because there are two parameters to be determined: the filter's order and its -3 dB "corner" frequency. We therefore need another point on its amplitude response curve. For the purposes of this simulation we choose that the gain of the digital filter at 7.5 kHz will be -1 dB. Because we are using the bilinear transformation to design the digital filter, we first need to design the frequency-warped analogue prototype. As preparation for the simulation(s), the student is required to carry out the following: 1. Use the standard frequency-warping formula to determine the frequencies at which the analogue prototype must have the gains of -1 dB and -96 dB (remember, at this point the sampling frequency is still 44.1kHz). 2. Using these results and the formula for the amplitude response of a Butterworth filter (see below), determine the order and -3 dB frequency of the warped analogue prototype. 3. Use the frequency warping formula to calculate the -3 dB frequency of the resulting digital filter. 

Reference no: EM13362179

Questions Cloud

Relationship between strategy and structureexplain what is : relationship between strategy and structureexplain what is the relationship between strategy and structure within the
Who do you believe is the most outstanding leaderwhat is : who do you believe is the most outstanding leader?what is this thing called leadership? - discussionof the people you
Bp oil spill the challenges aheadwhat is your : bp oil spill the challenges aheadwhat is your interpretation of what happened in the bp oil spill and how does this
Assignment 1- part aobject-oriented analysisobject-oriented : assignment 1- part aobject-oriented analysisobject-oriented analysis involves the following steps4. describe use cases.
In this simulation we are going to explore the design of a : in this simulation we are going to explore the design of a recursive digital filter which might be usedvin a digital
Planning my essay templatetitle pagereport title to what : planning my essay templatetitle pagereport title to what extent do you agree with free market economies being more
Question if the full-employment level of y is 250 what : question if the full-employment level of y is 250 what fiscal policy might the government follow? d. suppose y 200 c
Exacta sa is a major french producer based in lyons of : exacta s.a. is a major french producer based in lyons of precision machine tools. about two-thirds of its output is
Question 1 the owner of a motel is considering outsourcing : question 1. the owner of a motel is considering outsourcing the daily room cleanup to duffys maid service. the manager

Reviews

Write a Review

Applications of MATLAB Questions & Answers

  Problem 1nbsp use matlab to answer the following system of

problem 1.nbsp use matlab to answer the following system of linear equations2x y 3z 1 2x 6y 8z 3 6x 8y 18z 5

  Question 1sketch the z-plane pole-zero plot and determine

question 1.sketch the z-plane pole-zero plot and determine the stability status for the following digital system.

  In a shell-and-tube heat exchanger one fluid passes through

in a shell-and-tube heat exchanger one fluid passes through a central tube while another fluid flows through an outer

  You are expected to submit properly commented script andor

you are expected to submit properly commented script andor function files that solve the problem stated.nbsp your

  Matlab ndash discrete time simulationquestion 1 discrete

matlab ndash discrete time simulationquestion 1 discrete time system is given in attachment write a matlab m file to

  Write a matlab function speed planetary n emesh first last

write a matlab function speed planetary n emesh first last arm that computes the speed of a given link in a

  Exercise 1 jacobi and gauss-seidel iterations consider the

exercise 1 jacobi and gauss-seidel iterations consider the following linear systemthis is a discrete version of

  Problem consider a trapezoidal piece of polymer film as

problem consider a trapezoidal piece of polymer film as shown below. the parallel sides of the trapezoid are insulated

  You will write functionsbull bnull basisatolbull brange

you will write functionsbull bnull basisatolbull brange basisatolthe function null basis takes a matrix a as input and

  1 given the following actual cpu burst for a tasknbsp 6 4 6

1. given the following actual cpu burst for a tasknbsp 6 4 6 4 13 13 13 and an initial best guess at the burst as 10

  1 we want to find the integral of a function at an

1. we want to find the integral of a function at an arbitrary location x from the origin.nbsp thuswhere ix0 is the

  Regarding the program i want the following1we know that

regarding the program i want the following1.we know that there is a symmetry in the rod so the point at 0.2 must be

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd