Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Figure 2.8. A solution to the eight-queens puzzle. The ``eight-queens puzzle&; asks how to place eight queens on a chessboard so that no queen is in check from any other (i.e., no two queens are in the same row, column, or diagonal). One possible solution is shown in figure 2.8. One way to solve the puzzle is to work across the board, placing a queen in each column. Once we have placed k - 1 queens, we must place the kth queen in a position where it does not check any of the queens already on the board. We can formulate this approach recursively: Assume that we have already generated the sequence of all possible ways to place k - 1 queens in the first k - 1 columns of the board. For each of these ways, generate an extended set of positions by placing a queen in each row of the kth column. Now filter these, keeping only the positions for which the queen in the kth column is safe with respect to the other queens. This produces the sequence of all ways to place k queens in the first k columns. By continuing this process, we will produce not only one solution, but all solutions to the puzzle. We implement this solution as a procedure queens, which returns a sequence of all solutions to the problem of placing n queens on an n× n chessboard. Queens has an internal procedure queen-cols that returns the sequence of all ways to place queens in the first k columns of the board.
In this procedure rest-of-queens is a way to place k - 1 queens in the first k - 1 columns, and new-row is a proposed row in which to place the queen for the kth column. Complete the program by implementing the representation for sets of board positions, including the procedure adjoinposition, which adjoins a new row-column position to a set of positions, and empty-board, which represents an empty set of positions. You must also write the procedure safe?, which determines for a set of positions, whether the queen in the kth column is safe with respect to the others. (Note that we need only check whether the new queen is safe -- the other queens are already guaranteed safe with respect to each other.) .
MATH1550H: Assignment: Question: A word is selected at random from the following poem of Persian poet and mathematician Omar Khayyam (1048-1131), translated by English poet Edward Fitzgerald (1808-1883). Find the expected value of the length of th..
MATH1550H: Assignment: Question: what is the least number of applicants that should be interviewed so as to have at least 50% chance of finding one such secretary?
MATH1550H: Assignment: Question: Experience shows that X, the number of customers entering a post office during any period of time t, is a random variable the probability mass function of which is of the form
MATH1550H: Assignment:Questions: (Genetics) What is the probability that at most two of the offspring are aa?
MATH1550H: Assignment: Questions: Let’s assume the department of Mathematics of Trent University has 11 faculty members. For i = 0; 1; 2; 3; find pi, the probability that i of them were born on Canada Day using the binomial distributions.
Caselet on McDonald’s vs. Burger King - Waiting time
Generate descriptive statistics. Create a stem-and-leaf plot of the data and box plot of the data.
Problems on Sampling Variability and Standard Error and Confidence Intervals
Estimate the population mean
Conduct a marketing experiment in which students are to taste one of two different brands of soft drink
Find out the probability
LINEAR PROGRAMMING MODELS
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd