Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Consider a small simple Rankine Power cycle which produces 600kW power from an electric generator with an efficiency of 95%. The steam leaves the boiler at 1250psia as superheated steam and leaves the turbine at 2 psia with a quality of 90%.
1) What is the mass flow rate of steam through the turbine, lb/h? 2) If the boiler has an efficiency of 85% and burns natural gas with a heating value of 100,000 btu/therm at a cost of $1.25/therm, what does it cost to provide natural gas to this plant in $/hr? 3) What is the heat rejection for the condenser in btu/h? 4) If the condenser is water cooled with cooling water entering at 85deg F and leaving at 100 deg F, what flow rate of cooling water is required in gpm? 5) What size schedule 40 steel pipe would your recommend for this flow? And what would the actual loss factor be for this selection if ft/100ft? (hint: you use 2.5 ft/100 ft, in the range of 1 to 4 ft/100 ft for selection but once you make a selection, there is an actual head loss factor then for that selection). 6) The cooling water is circulated through the Rankine cycle condenser and then to a cooling tower where heat is rejected to the atmosphere by evaporating some of the water, this lowers the temperature from the 100 deg F to the 85 deg F. There are several functions that take place in a cooling tower: 1)some water is evaporated 2) some water is drained off to the sewer to control the build up of dissolved solids and some water is blown out of the tower due to wind. Let's assume for our tower that the water loss due to windage and blowdown is negligible and that the major loss of water is through evaporation. Assume that for every 960btu of heat rejection by the Rankine cycle condenser, that 1 lbm of water must be evaporated (approximately hfg for water in this temperature range). Assume the density of water to be 8.34 lbm/gallon.
City water is piped to the cooling tower to make up the water due to evaporation. The water originates in a water main at 55psig pressure. The float valve at the cooling tower that introduces the make-up water to the tower to replace the water being evaporated requires a pressure of 10psig to work properly. There is a water meter (assume 5/8 inch water meter) and a backflow preventor (pressure drop of 10 psi) in the supply line to the cooling tower from the water main. The pipe developed length is 150 ft. What size steel pipe (fairly rough) would you recommend to supply this make-up water? Pick the larger pipe size if you bracket two pipe sizes.
Package Design Brief: Assume you are the packaging engineer for a large consumer products company. In this company, the Packaging Design Briefs are initiated by the marketing group and forwarded to the Package Engineering group.
Define dynamic viscosity, Determine the centroid, Pressure due to the height of liquid, Advantage of changing the liquid, Calculate the total moment about the hinge of the seal gate.
DOF system and Find the differential equation describing the system
Write a paper on Boyle's law and describe Compression and Combustion stroke . Also explain Charles's law and illustrate SI engine and CI engine.
To Verify the law for parallelogram of forces, law for triangle of forces and law of polygon of forces. These laws are very useful to calculate unknown forces in very short time.
What is the discharge revised discharge pressure of the compressor.
The role of IFRS in both developing and developed capital markets.
Wind turbines are becoming more and more common as a method of energy production, wind turbines by their very nature are dynamic and are subject to and create their own internal and external kinematics and kinetics.
8 x product engineering and design review (week 2 – 12), ~3 pages per item which must contain a brief description of the product then delve into concepts such as materials selection, manufacturing methods, life cycle analysis, recyclability and overa..
Design of absorption column and the cooler. Process design of other units should be completed along with pipe sizes.
Determine maximum total bending moment (static plus dynamic) of the beam under steady-state conditions.
Determine the magnitude of the horizontal and vertical components of the force of the water on the gate.
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd