Reference no: EM13975915
1. Find the values of the six trigonometric functions for the angle θ. Assume a = 7, b = 24, c = 25.
![348_Triangle.png](https://secure.expertsmind.com/CMSImages/348_Triangle.png)
2. Find the values of the six trigonometric functions for the angle θ. Assume a = 1, c = 4.
![63_Triangle1.png](https://secure.expertsmind.com/CMSImages/63_Triangle1.png)
3. Find the values of the six trigonometric functions for the angle θ.
![1780_Triangle2.png](https://secure.expertsmind.com/CMSImages/1780_Triangle2.png)
4. Find the values of the six trigonometric functions for the angle θ.
![2388_Triangle3.png](https://secure.expertsmind.com/CMSImages/2388_Triangle3.png)
5. Find the exact values of x and y. Assume s = 4.
![91_Triangle4.png](https://secure.expertsmind.com/CMSImages/91_Triangle4.png)
6. Find the exact values of x and y. Assume a = 9.
![1153_Triangle5.png](https://secure.expertsmind.com/CMSImages/1153_Triangle5.png)
7. Find the exact values of x and y. Assume s = 8.
![1606_Triangle6.png](https://secure.expertsmind.com/CMSImages/1606_Triangle6.png)
8. Find the exact values of the trigonometric functions for the acute angle θ. sin θ= 4/5
9. Find the exact values of the trigonometric functions for the acute angle θ. cos θ = 12/13.
10. Find the exact values of the trigonometric functions for the acute angle θ. tan θ =3/4.
11. Find the exact values of the trigonometric functions for the acute angle θ. cot θ = 24/7.
12. Find the exact values of the trigonometric functions for the acute angle θ. sec θ =8/7.
13. A forester, 150 feet from the base of a redwood tree, observes that the angle between the ground and the top of the tree is 55°. Estimate the height of the tree. (Round your answer to one decimal place.)
14. Use the Pythagorean identities to write the expression as an integer.
(a) tan2 9β - sec2 9β
(b) 9 tan2 β - 9 sec2 β
15. Use the Pythagorean identities to write the expression as an integer.
(a) csc2 6α - cot2 6α
(b) 6 csc2 α - 6 cot2 α
16. Use the Pythagorean identities to write the expression as an integer.
(a) 8 sin2 θ + 8 cos2 θ
(b) 8 sin2(θ/4) + 8 cos2 (θ/4)
17. Use fundamental identities to write the first expression in terms of the second, for any acute angle θ. cos θ, cot θ
18. Find the exact values of the six trigonometric functions of θ if θ is in standard position and the terminal side of θ is in the specified quadrant and satisfies the given condition.
III; parallel to the line 2y - 9x + 7 = 0
19. Find the exact values of the six trigonometric functions of θ if θ is in standard position and the terminal side of θ is in the given quadrant and satisfies the given condition.
II; Parallel to the line through A(-1, 10) and B(-2, 13)
20. Find the exact values of the six trigonometric functions of each angle, whenever possible. (If there is no solution, enter NO SOLUTION.)
(a) 900°
(b) -810°
(c) 10π
(d) 9π/2
21. Find the quadrant containing θ if the given conditions are true.
quadrant I
quadrant II
quadrant III
quadrant IV
(a) cos θ < 0 and sin θ > 0
(b) sin θ < 0 and cot θ < 0
(c) csc θ < 0 and sec θ < 0
(d) sec θ < 0 and tan θ < 0
22. Find the quadrant containing θ if the given conditions are true.
Quadrant I
Quadrant II
Quadrant III
Quadrant IV
(a) tan θ < 0 and cos θ > 0
(b) sec θ < 0 and tan θ < 0
(c) csc θ < 0 and cot θ < 0
(d) cos θ < 0 and csc θ < 0
23. Use fundamental identities to find the values of the trigonometric functions for the given conditions.
tan θ = -3/4 and sin θ > 0
24. Use fundamental identities to find the values of the trigonometric functions for the given conditions.
cot θ = 4/3 and cos θ < 0
25. Use fundamental identities to find the values of the trigonometric functions for the given conditions.
sin θ = -4/5 and sec θ > 0
26. Use fundamental identities to find the values of the trigonometric functions for the given conditions.
cos θ = 1/2 and sin θ < 0.