Reference no: EM13534483
1. Which of the ordered pairs is a solution for the equation 5x – 4y = 20?
A) (–4, –5) B) (0, 5) C) (0, –5) D) (–4, 0)
11. Which of the ordered pairs
(3, 1), (0, –4), (–4, 0), (–3, –7)
are solutions for the equation x – y = 4?
A) (–4, 0) and (–3, –7) C) (3, 1) and (–4, 0)
B) (0, –4) and (–3, –7) D) (0, –4), (–4, 0), and (–3, –7)
12. Find the slope of the line passing through the points (2, –5) and (–10, –5).
A) –12 B) Undefined C) 1 D) 0
16. If y varies directly with x, and y = 56 when x = 4, find the constant of variation k.
17. Plot the point with coordinates (–4, 0).
19. Graph using the intercept method: x + 3y = 6.
22. Graph y = 4.
23. Plot the point with coordinates (–2, –4).
What is the slope of the roof to the nearest hundredth
: One day, the temperature at 8:00 A.M. was 41°F, and by 1:00 P.M. the temperature was 61°F. What was the hourly rate of temperature change?
|
Find the dimensions of the rectangle
: The length of a rectangle is 8 ft more than the width. If the area of the rectangle is 65 ft2, find the dimensions of the rectangle.
|
Find the greatest common factor for
: Find the greatest common factor for the following list of terms.
|
If a ball is thrown vertically upward
: If a ball is thrown vertically upward from ground level with an initial velocity of 64 ft/s. After t s, the height h, in feet, is given by
|
Find the slope of the line passing through the points
: If y varies directly with x, and y = 56 when x = 4, find the constant of variation k.
|
Factor completely using the trial-and-error method
: Factor completely using the trial-and-error method.
|
Find the greatest common factor for the following list
: Find the greatest common factor for the following list of terms.
|
Find the dimensions of the rectangle
: The length of a rectangle is 3 ft more than the width. If the area of the rectangle is 40 ft2, find the dimensions of the rectangle.
|
After how many seconds will the ball be level with the top
: A ball is thrown vertically upward from the top of a building 500 ft high. If the ball is thrown with an initial velocity of 64 ft/s, the height of the ball, in feet, above the ground after t seconds is given by
|