Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The machine of Problem 12.1.4 can be used as a motor. Let the terminals of the coil be connected to a voltage source of 1 kV rms. If the motor runs at 1800 r/min and draws a current of 2 A, find the torque supplied to the mechanical load.
Problem 12.1.4
A coil is formed by connecting 15 conducting loops, or turns, in series. Each loop has length l = 2.5 m and width w = 10 cm. The 15-turn coil is rotated at a constant speed of 30 r/s (or 1800 r/min) in a magnetic field of density B = 2 T. The configuration of
Figure P12.1.3 applies.
(a) Find the induced emf across the coil.
(b) Determine the average power delivered to the resistor R = 500 Ω, which is connected between the terminals of the coil.
(c) Calculate the average mechanical torque needed to turn the coil and generate power for the resistor. Identify the action of the device as that of a motor or a generator.
Why a substance is being heated at a fast rate the temperature of decomposition
Assist with the setting of design variables necessary for sizing equipment
Use Laplace transformation to solve the initial value problem
Equal rates of mass transfer for the production of the fine chemical are required. This is often required for certain types of organic synthesis.
Application of reverse osmosis principles for the desalination of sea water
Prepare the design and evaluation of a new chemical manufacturing process.
Adsorption and Membrane Processes
Draw T-S diagram of the cycle.
The potential energy between two atoms A and B are constants and r the interatomic separation distance.
Implications of the future of fabrication for international trade, transportation, and logistics
The atmospheric pressure of 100k Pa acts on the other side of the piston. The gas is heated until the volume is doubled and the final pressure is 500 kPa. Calculate the work done by the gas.
Evaluate particle diameter at different terminal gas velocities
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd