Find the correlation coefficient.

Assignment Help Applied Statistics
Reference no: EM13924623

1. Match the following sample correlation coefficients with the explanation of what that correlation coefficient means.

Type the correct letter in each box.

1. r = 1

2. r = 0

3. r = :1

4. r = :92

A. a perfect negative relationship between x and y

B. a weak positive relationship between x and y

C. no relationship between x andy

D. a strong positive relationship between x and y

2. Match the correlation coefficients with their scatterplots.

Select the letter of the scatterplot below which corresponds to the correlation coefficient. (Click on image for a
larger view.)

? 1. r = 0:76

? 2. r = 0:97

? 3. r = 0:49

? 4. r = 0:22

A B C D

3. Use a scatterplot and the linear correlation coefficient r to determine whether there is a correlation between the

two variables. (Note: Use software, and don't forget to look at the scatterplot!)

x 0 1:4 2:7 3:3 4:1 5:7 6:7 7:6 8:9 9:4 10:7 11:9 12y 0 1:9 1:6 3:2 4:7 7:3 8:5 9:5 10:7 8:4 11:4 10:5 10(a) r =

(b) There is

A. a perfect negative correlation between x and y

B. a positive correlation between x and y

C. a perfect positive correlation between x and y

D. a nonlinear correlation between x and y

E. a negative correlation between x and y

F. no correlation between x and y

4. Keeping water supplies clean requires regular measurement of levels of pollutants.

The measurements are indirect- a typical analysis involves forming a dye by a chemical reaction with the dissolved pollutant, then

passing light through the solution and measuring its " absorbence."

To calibrate such measurements, the laboratory measures known standard solutions and uses regression to relate absorbence and

pollutant concentration.This is usually done every day. Here is one series of data on the absorbence for different levels of nitrates.

Nitrates are measured in milligrams per liter of water.

Nitrates 100 100 150 150 250 600 800 1200 1500 Absorbance 5.1 7.2 12.6 20.7 46.2 94.6 140.2 195.7 209.2 Chemical theory says that

these data should lie on a straight line. If the correlation is not at least 0.997, something went wrong and the calibration procedure is

repeated.

(a) Find the correlation r.

r =

(b) Must the calibration be done again? (Answer YES or NO).

5.  For each problem, select the best response.

(a) You have data for many years on the average price of a barrel of oil and the average retail price of a gallon of unleaded

regular gasoline. When you make a scatterplot, the explanatory

variable on the x -axis

A. is the price of oil.

B. can be either oil price or gasoline price.

C. is the price of gasoline.

D. None of the above.

(b) What are all the values that a correlation r can possibly take?

A. -1 r 1

B. 0 r 1

C. r 0

D. None of the above.

(c) In a scatterplot of the average price of a barrel of oil and the average retail price of a gallon of gasoline, you expect to see

A. a positive association.

B. very little association.

C. a negative association.

D. None of the above.

6. For each problem, select the best response.

(a) A researcher wishes to determine whether the rate of water flow (in liters per second) over an experimental soil bed

can be used to predict the amount of soil washed away (in kilograms). In this study, the explanatory variable is the

A. depth of the soil bed.

B. amount of eroded soil.

C. size of the soil bed.

D. rate of water flow.

E. None of the above.

(b) The Columbus Zoo conducts a study to determine whether a household's income can be used to predict the amount

of money the household will give to the zoo's annual fund drive.The response variable in this study is

A. the amount of money a household gives to the zoo's annual fund drive.

B. the Columbus Zoo.

C. a household's income.

D. all households in Columbus.

E. None of the above.

(c) A researcher measures the correlation between two variables.

This correlation tells us

A. whether there is a relation between two variables.

B. the strength of a straight line relation between two variables.

C. whether a cause-and-effect relation exists between two variables.

D. whether or not a scatterplot shows an interesting pattern.

E. None of the above.

7. For each problem, select the best response.

(a) Smokers don't live as long (on the average) as nonsmokers, and heavy smokers don't live as long as light smokers. You

regress the age at death of a group of male smokers on the number of packs per day they smoked. The slope of your regression
line

A. must be between -1 and 1.

B. will be less than zero.

C. will be greater than zero.

D. can't tell without seeing the data.

(b) The points on a scatterplot lie close to the line whose equation is y = 4x5. The slope of the line is

A. -4

B. 5

C. 9

D. 4

E. None of the above.

(c) Measurements on young children in Mumbai, India, found this least-squares line for predicting height y from armspan x:

ˆy = 6:4+0:93x

All measurements are in centimeters (cm). How much on the average does height increase for each additional centimeter

of armspan?

A. 6.4 cm

B. 0.93 cm

C. 7.33 cm

D. 0.64 cm

E. None of the above.

 

8. A study of king penguins looked for a relationship between how deep the penguins dive to seek food and how long they stay underwater.

For all but the shallowest dives, there is a linear relationship that is different for different penguins.

The study report gives a scatterplot for one penguin titled " The relation of dive duration (DD) to depth (D)." Duration DD is measured

in minutes and depth D is in meters. The report then says,

" The regression equation for this bird is: DD = 2.48 + 0.0035D.

(a) What is the slope of the regression line?.

ANSWER minutes per meter.

(b) According to the regression line, how long does a typical

dive to a depth of 400 meters last?

ANSWER minutes.

9. We have data on the lean body mass and resting metabolic rate for 12 women who are subjects in a study of dieting.

Lean body mass, given in kilograms, is a person's weight leaving out all fat. Metabolic rate, in calories burned per 24

hours, is the rate at which the body consumes energy.

Mass 39.3 36.1 37.7 37.4 44.2 41.9 46 38.2 45.3 46.4 45.3 53.3

Rate 1290 980 1150 900 1230 1050 940 1470 1330 1300 1410 1010

Find the least-squares regression line for predicting metabolic

rate from body mass.

ANSWER: ˆ y =

10.  Heights (in centimeters) and weights (in kilograms) of 7 supermodels are given below.

Find the regression equation, letting the first variable be the independent (x) variable, and predict the weight of a supermodel who is 167 cm tall.

Height 178 176 166 174 172 168 176

Weight 57 55 47 54 53 50 56

The regression equation is ˆ y = + x:

The best predicted weight of a supermodel who is 167 cm tall is .

11. Empathy means being able to understand what others feel.

To see how the brain expresses empathy, researchers recruited 16 couples in their midtwenties who were married or

had been dating for at least two years. They zapped the man's hand with an electrode while the woman watched, and measured

the activity in several parts of the woman's brain that would respond to her own pain. Brain activity was recorded as a fraction

of the activity observed when the woman herself was zapped with the electrode.

The women also completed a psychological test that measures empathy.

Subject 1 2 3 4 5 6 7 Empathy Score 42 48 39 55 63 66 66 Brain Activity -0.113 0.383 0.006 0.366 0.013 0.4 0.104 Given that the

equation for the regression line is ˆ y=0:00539x+

0:04637, what is the residual for subject 2?

ANSWER:

12. A study was conducted to determine whether the final grade of a student in an introductory psychology course is linearly related to

his or her performance on the verbal ability test administered before college entrance.

The verbal scores and final grades for 10 students are shown in the table below.

Student   Verbal Score x      Final Grade y
  1              74                        100
 2               71                         75
 3               33                         63
 4               80                         79
 5               42                         86
 6               36                         92
 7               48                         85
 8               47                         68
 9               72                         93
10              28                         87

Find the following:

(a) The correlation coefficient: r =

(b) The least squares line: ˆ y =

(c) Calculate the residual for the fourth student:

13. The amounts of 6 restaurant bills and the corresponding amounts of the tips are given in the below.

Assume that bill amount is the explanatory variable and tip amount the response variable.

Bill 64:30 49:72 70:29 106:27 43:58 32:98

Tip 7:70 5:28 10:00 16:00 5:50 4:50

(a) Find the correlation: r =

(b) Does there appear to be a significant correlation?

A. No

B. Yes

(c) The regression equation is ˆ y = .

(d) If the amount of the bill is $95; the best prediction for the amount of the tip is $ .

Note: Enter your answer as a number xx.xx

(e) According to the regression equation, for every $10 increase in the bill, the tip should (Enter INCREASE or DECREASE) by $ .

14. Education and crime ratings for randomly selected Canadian cities are given in the following table. Education is a composite rating

including pupil/teacher ratio, academic options in higher education, etc.

The higher the education rating, the better the education system.

Crime is expressed in crimes committed per 100 people.

City Education Rating (%) Crime Rating (%)

Calgary 35 12

Toronto 35 10

Winnipeg 31 16

Vancouver 32 20

Halifax 30 25

Ottawa 36 13

Montreal 33 21

Use two-decimal places in your answers.

(a) State the slope term and the Y -intercept term of the line which attempts to predict the crime rating of a Canadian

city based on its linear association with its education rating.

(b) Find the correlation

(c) As the education rating of a Canadian city decreases by 1sure you include the negative sign if warranted) percentage?

(d) What percentage of the variation in the variable Crime Rating is not explained by its linear relationship to the variable Education

Rating? Use at least one place after the decimal.

(e) Using your answer in (a), predict the mean crime rate of a Canadian city having an education rating of 34

15.  The following data, taken from 8 towns in Alberta, are the percentage of residents who are university graduates and

the median household incomes (in $ 1000's) for all households in each town.
Graduates (%)   Median Income ($ 1000)
   61.7                     47.6
   50.9                     34.1
   57.1                     31.5
   56.4                     41.3
   42.8                     34.5
   42.1                     28.1
   33.2                     23.1
   19.2                     20.4

Use two-decimal places in your answers.

(a) State the slope term and the Y -intercept term of the least squares regression line which attempts to predict

the median income of a town in Alberta based on its linear relationship with the percentage of residents who are university

graduates.

(b) Find the correlation coefficient.

(c) As the percenage of university graduates increases by 10

(d) What percentage of the variation in the variable Median Income is not explained by its linear relationship to the variable Percentage

of University Graduates? Use at least one place after the decimal.

(e) Using your answer in (a), predict the average median income of an Alberta town with 24.0

Reference no: EM13924623

Questions Cloud

Linear programming case study : It will be a problem with at least three (3) constraints and at least two (2) decision variables. The problem will be bounded and feasible. It will also have a single optimum solution (in other words, it won't have alternate optimal solutions). Th..
What do the firms say about their asset allocation strategy : What do they say about their asset allocation strategy? What are their firms' emphases-for example, value investing, international diversification, principal preservation, retirement and estate planning?
Describe in detail the business, product or service : Describe in detail the business, product or service. Consider how your new product will be different from the competition. Write your company's mission statement
Merger, acquisition, and international strategies : Choose two (2) public corporations in an industry with which you are familiar - one (1) that has acquired another company and operates internationally and one (1) that does not have a history of mergers and acquisitions and operates solely within ..
Find the correlation coefficient. : As the percenage of university graduates increases by 10
Firm can cut its requirements for working capital in half : Better Mousetraps has developed a new trap. It can go into production for an initial investment in equipment of $5.7 million. The equipment will be depreciated straight line over 6 years to a value of zero, but in fact it can be sold after 6 years fo..
Analyze the role of fiscal-monetary policy interactions : Analyze the role of fiscal-monetary policy interactions and fiscal coordination in EMU under the assumption of strategic wage setting in unionized labour markets.
The equipment will be depreciated straight line : Better Mousetraps has developed a new trap. It can go into production for an initial investment in equipment of $5.4 million. The equipment will be depreciated straight line over 6 years to a value of zero, but in fact it can be sold after 6 years fo..
What percentage should your cash reserve contain : Suppose your first job pays you $28,000 annually. What percentage should your cash reserve contain? How much life insurance should you carry if you are unmarried? How much if you are married with two young children?

Reviews

Write a Review

Applied Statistics Questions & Answers

  Hypothesis testing

What assumptions about the number of pedestrians passing the location in an hour are necessary for your hypothesis test to be valid?

  Calculate the maximum reduction in the standard deviation

Calculate the maximum reduction in the standard deviation

  Calculate the expected value, variance, and standard deviati

Calculate the expected value, variance, and standard deviation of the total income

  Determine the impact of social media use on student learning

Research paper examines determine the impact of social media use on student learning.

  Unemployment survey

Find a statistics study on Unemployment and explain the five-step process of the study.

  Statistical studies

Locate the original poll, summarize the poling procedure (background on how information was gathered), the sample surveyed.

  Evaluate the expected value of the total number of sales

Evaluate the expected value of the total number of sales

  Statistic project

Identify sample, population, sampling frame (if applicable), and response rate (if applicable). Describe sampling technique (if applicable) or experimental design

  Simple data analysis and comparison

Write a report on simple data analysis and comparison.

  Analyze the processed data in statistical survey

Analyze the processed data in Statistical survey.

  What is the probability

Find the probability of given case.

  Frequency distribution

Accepting Manipulation or Manipulating

Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd