Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
1. The initial conditions for an air-standard Otto cycle operating with a compression ratio of 8:1 are 95 kPa and 17o C. At the beginning of the compression stroke, the cylinder volume is 2.20 L ( 1L=0.001 m3)and 3.60 kJ of heat is added during the constant volume heating process. Calculate the pressure and temperature at end of each process of the cycle, and determine the thermal efficiency and mean effective pressure of the cycle.
2. An ideal Rankine cycle uses water as a working fluid, which circulates at a rate of 80 kg/s. The boiler pressure is 6 Mpa, and the condenser pressure is 10 kpa. The water enters the turbine at 600 C and leaves the condenser as a saturated liquid. Assume that the heat is transferred to the working fluid in the boiler from a reservoir at 1400 K and that the fluid in the condenser rejects heat to the surroundings at 25 C. Calculate the following quatities: (a) The power required to operate the pump; (b) The heat-input rate to the water in the boiler; (c) The power developed by the turbine
3. An ideal Brayton cycle uses air as a working fluid. The air enters the compressor at 101 kpa and 37 C. The pressure ratio of the compressor is 12:1, and the temperature of the air as it leaves the turbine is 497 C. The temperature and the pressure of the surroundings are 37 C and 100 kpa, respectively. Use the air-standard assumptions and determine the following quantities: (a) The work per unit mass required to operate the compressor; (b) The work per unit mass produced by the turbine; (c) The heat transfer per unit mass during the combustion process and during the exhaust process; (d) The irreversibility of the cycle on a unit-mass basis, assuming the temperature of the low- and high-temperature reservoirs ar 37 C and 1300 C, respectively; (e) The thermal efficiency of the cycle.
Package Design Brief: Assume you are the packaging engineer for a large consumer products company. In this company, the Packaging Design Briefs are initiated by the marketing group and forwarded to the Package Engineering group.
Define dynamic viscosity, Determine the centroid, Pressure due to the height of liquid, Advantage of changing the liquid, Calculate the total moment about the hinge of the seal gate.
DOF system and Find the differential equation describing the system
Write a paper on Boyle's law and describe Compression and Combustion stroke . Also explain Charles's law and illustrate SI engine and CI engine.
To Verify the law for parallelogram of forces, law for triangle of forces and law of polygon of forces. These laws are very useful to calculate unknown forces in very short time.
What is the discharge revised discharge pressure of the compressor.
The role of IFRS in both developing and developed capital markets.
Wind turbines are becoming more and more common as a method of energy production, wind turbines by their very nature are dynamic and are subject to and create their own internal and external kinematics and kinetics.
8 x product engineering and design review (week 2 – 12), ~3 pages per item which must contain a brief description of the product then delve into concepts such as materials selection, manufacturing methods, life cycle analysis, recyclability and overa..
Design of absorption column and the cooler. Process design of other units should be completed along with pipe sizes.
Determine maximum total bending moment (static plus dynamic) of the beam under steady-state conditions.
Determine the magnitude of the horizontal and vertical components of the force of the water on the gate.
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd